纯石墨制备技术工艺配方资料精选

        强度高、抗热震性好、耐高温、抗氧化、电阻系数小

国际新技术资料网 创新科技之路
New Technology Of High Purity Graphite
国际新技术资料网LOGO
国际新技术资料网最新推出
新版说
各位读者:大家好!

       自从我公司2000年推出每年一期的石墨及石墨烯制造系列列新技术汇编以来,深受广大企业的欢迎,在此,我们衷心地感谢致力于创新的新老客户多年来对我们产品质量和服务的认同,由衷地祝愿大家工作顺利!

       石墨产业未来市场前景十分广阔。传统应用领域对石墨消费拉动、新兴领域拓展是石墨产品未来市场的增长点。耐火材料行业是石墨消费的重要领域,镁碳砖对石墨的需求量占我国石墨消费量的近1/3,电动汽车锂电池负极材料,钢铁行业的持续稳定发展将促进石墨产业持续稳定增长。随着高新技术的发展、新材料产业将成为石墨产业新的增长点,高性能石墨导电材料、密封材料、环保材料、热交换材料、石墨烯等新兴材料以及制品产业将会得到快速发展。

       石墨产品需求结构将不断升级,球型石墨、柔性石墨、石墨电极、核石墨等加工产品将成为新的市场热点;利用具有自主知识产权的创新性技术,研究开发优质石墨新材料、广泛应用于能源、环保、国防等领域。未来产品需求专业化程度不断加强,满足下游领域对高性能、专业化石墨材料制品需求将成为发展主流,由石墨原材料向深加工加工及其制品方向发展趋势明显,同时,大力发展节能环保、新能源、生物、高端装备制造、新材料、新能源汽车等战略新兴产业,从而带动石墨产业快速发展。

       本期所介绍的资料,系统全面地收集了到2023年石墨及石墨烯制备制造最新技术,包括:优秀的专利新产品,新配方、新产品生产工艺的全文资料。其中有许多优秀的新技术在实际应用巨大的经济效益和社会效益,这些优秀的新产品的生产工艺、技术配方非常值得我们去学习和借鉴。
       全国订购热线:13141225688 在线订购!

2024新版《石墨提纯、高纯石墨制造工艺配方精选汇编》

<a target="_blank" href="http://wpa.qq.com/msgrd?v=3&uin=&site=qq&menu=yes"><img border="0" src="http://wpa.qq.com/pa?p=2::51" alt="点击这里给我发消息" title="点击这里给我发消息"/></a>
《钛基高温合金技术工艺配方精选汇编》

《钛基高温合金技术工艺配方精选汇编》

【资料页数】 779页 (大16开 A4纸)
【资料内容】 制造工艺及配方
【项目数量】69项
【交付方式】上海中通(免邮费)顺丰(邮费自理)
【合订本】 1580元(上、下册)
【电子版】 1360元(PDF文档,可电脑、手机阅读)
【订购电话】 13141225688   13641360810
【联 系  人】 梅 兰 (女士)


【内容介绍】本篇专辑精选收录了国内外关于钛基高温合金制造最新技术工艺配方技术资料。涉及国内外著名公司、科研单位、知名企业的最新技术全文资料,工艺配方详尽,技术含量高、环保性强是从事高性能、高质量、产品加工研究生产单位提高产品质量、开发新产品的重要情报资料。

资料中包括制造原料组成、配方、生产工艺、产品性能测试及标准、解决的具体问题、产品制作实施例等等,是企业提高产品质量和发展新产品的重要、实用。

0.00
0.00
数量:
立即购买
加入购物车
  

【资料页数】 779页 (大16开 A4纸)
【资料内容】 制造工艺及配方
【项目数量】69项
【交付方式】上海中通(免邮费)顺丰(邮费自理)
【合订本】 1580元(上、下册)
【电子版】 1360元(PDF文档,可电脑、手机阅读)
【订购电话】 13141225688   13641360810
【联 系  人】 梅 兰 (女士)


【内容介绍】本篇专辑精选收录了国内外关于钛基高温合金制造最新技术工艺配方技术资料。涉及国内外著名公司、科研单位、知名企业的最新技术全文资料,工艺配方详尽,技术含量高、环保性强是从事高性能、高质量、产品加工研究生产单位提高产品质量、开发新产品的重要情报资料。

资料中包括制造原料组成、配方、生产工艺、产品性能测试及标准、解决的具体问题、产品制作实施例等等,是企业提高产品质量和发展新产品的重要、实用。

1    西南交通大学研制一种抗氧化高温钛合金及其制备方法,利用理论计算进行抗氧化合金元素的筛选并设计合金成分,然后采用非自耗真空电弧熔炼法依次进行中间合金和目标合金的熔炼,最后进行均匀化热处理,得到具有优良抗氧化性能的高温钛合金。解决钛合金在600℃以上温度抗氧化性较差的问题,并且能够避免合金研制的盲目性、周期长和成本高等缺陷。

2    一种轻量化高温钛合金及其制备方法,Ti含量≥85%;且V、Cr、Zr、Fe、Sn和Mo总含量≤7.0%。 钛合金密度小于4.4g/cm<sup>3</sup>,室温抗拉强度大于1100MPa,500℃抗拉强度大于730MPa,650℃抗拉强度大于440MPa;并且,在500℃,440MPa下的持久时间大于170h,在500℃,470MPa下的持久时间大于100h。

3    北京工业大学研制一种高温性能优异的多组元耐高温钛合金及制备方法,属于钛合金技术领域。制备新型多组元高温钛合金,多向等温锻造后采用单向轧制,而后进行固溶时效处理来大幅提高其高温性能。650℃下,抗拉强度超大于等于700MPa,延伸率大于等于30%。

4    河北工业大学研制一种短时用高温高强铸造钛合金,采用安装有水冷铜坩埚的高真空悬浮熔炼炉进行熔炼、浇注,获得的铸造高温钛合金在700℃和750℃高温下,抗拉强度分别不低于600MPa和500MPa;等温氧化120h后,氧化增重分别不超过0.5mg/cm<sup>2</sup>和0.9mg/cm<sup>2</sup>。提高了短时铸造高温钛合金的热强性,可以满足其在700℃~750℃应用条件下瞬时高温强度的要求。

5    一种β凝固γ‑TiAl高温钛合金,进一步地,还涉及β凝固γ‑TiAl高温钛合金的制备方法。该合金凝固路径不经过α相区,只经过β相区,从而避免了包晶反应区,并且在β凝固时能够增加层片团取向的多样性,有效的细化组织、消除铸造织构并避免了高低密度夹杂的问题,获得成分、组织均匀的钛合金铸锭,该合金能够充分满足航空航天、军工等领域的使用要求。

6    耐热型钛合金,烷基磺酸钠、十五烷基酚配合增强产品体系的活性能,而盐酸、硅烷偶联剂,进一步的协配增强调节改性液原料之间的的配合效果,原料之间协配,调节改性液能够增强钛合金体系原料的界面性,增强产品耐热、耐腐协调改进效果。

7    一种高温钛合金大尺寸曲面锻件的低成本制备方法。该方法包括适用的合金类型、热加工工艺及热处理方法等组成要素,采用模锻成形和退火处理两道主要工序。采用的技术制备的曲面锻件,制造成本可降低10%~20%,对于单件重量1200kg以上、最大投影面积4m<sup>2</sup>以上锻件技术优势更明显。用于航空航天等领域整体或分体面板或臂板结构,满足航空航天等高技术领域对轻质耐高温材料的应用需求。

8    一种适用于大尺寸高温钛合金曲面或平板构件的消应力退火工艺。包括适用的退火次数、退火温度、保温时间、冷却方式等组成要素。对高温钛合金锻件进行数控加工过程中的消应力退火,可实现高效消除内应力的同时,最大限度保证材料显微组织和力学性能稳定,为飞机用壁板等形状复杂、高尺寸精度零件的数控加工提供技术支撑和保障,也可推广应用于同材质发动机整体叶盘、机匣等复杂结构件数控加工过程中的消应力退火处理,满足航空航天等高技术领域对轻质耐高温大尺寸高温钛合金零件的应用需求。

9    西安理工大学研制一种三维球团微构型高温钛合金基复合材料,其制备方法包括:将称好的组分进行低能球磨,得到混合粉末,将混合粉末在石墨模具中预压成型,在1100~1300℃进行烧结致密化处理,得到三维球团微构型高温钛合金基复合材料。  方法制备的三维球团微构型高温钛合金基复合材料具有较好的高温强度,高温使用温度,并且在高温下强塑性匹配良好。

10 一种改善高温钛合金锻坯晶粒尺寸及取向分布均匀性的方法,与现有技术相比,通过在β单相区热处理和α单相区锻造,简化各热加工和热处理工序过程中的微观组织优化方式,能够有效消除钛合金锻坯内“微织构带”且充分细化晶粒尺寸至可实现材料的超塑性成形,获得晶粒尺寸、取向分布均匀的锻坯组织。

11 一种轻质耐高温的钛基多主元复合材料,制备的钛基多主元复合材料具有低密度、耐高温、综合性能优异等性能特点,在航空航天领域的高温结构件上具有很好的应用潜力。

12 太原理工大学研制一种高强韧性短时高温钛合金板材及其制备方法和应用,采用固溶淬火+锻造开坯+双衬板轧制+时效退火的热机械处理工艺,获得晶粒细小、第二相纳米弥散分布、无边裂、兼具优异室温工艺塑性和高温瞬时强度的大尺寸钛合金板材,满足航空航天、军事装备工业对合金材料综合性能的要求。

13 大连理工大学技术  一种600℃/1GPa级高温超高强钛合金及其制备方法 属于Ti‑Al‑Zr‑Sn‑Si加难熔金属的合金体系,600℃下的拉伸强度不低于1GPa,塑性不低于10%,接近镍基高温合金的水平,且密度仅为4.7g.cm<sup>3</sup>,兼具有良好的高温强度和塑形、损伤容限能力高、可靠性高、且成本低,便于大规模生产,可作为尖端航空、武器装备高温结构部件的备选材料。 

14 一种热强性高温钛合金及其锻坯的热加工方法,其中,合金元素W和Mo的含量满足:(W)≥(Mo/4)且2.8%≤(Mo/2)+(W)≤3.2%。合金元素Zr和Si的含量满足反向关系,即增加Si含量的同时需适当降低Zr的含量,且满足:‑(Zr/20)+0.35%≤(Si)≤‑(Zr/20)+0.4%。钛合金通过β相区快速变形和α+β两相区的慢速变形实现合金组织的细化和均匀化。热处理后合金在室温至600℃均具有良好的强韧性。该合金适合制备航空、航天高温部件。

15 一种1400MPa级耐高温钛基多主元合金。其特征在于:合金质量分数为6.2%~7.29%的Al、38.0%~39.8%的Zr、0.5%~3.5%的Hf、0.08%~0.5%的Si、0.05~0.2%的C+O、0~2%的Sn、0~2%的Nb,余量为钛和不可避免的杂质。其室温强度在1400MPa以上,断后伸长率达到5%以上,650℃强度保持在800MPa以上,在航空航天领域的高温结构件上具有很好的应用潜力。

16 一种高温高强钛合金及其增材制备方法,采用了高能束增材制造方法进行定向沉积,通过基于TC11的特定成分设计出适合增材制造的钛合金,利用增材制造小熔池以及高冷却速率的特点降低了元素的偏析,使得合金元素分配均匀,显著提升了钛合金高温力学性能,在500℃时的屈服强度为900MPa以上,延伸率20%以上,断面收缩率60%以上。

17 一种具有混合组织和高强度特征的高温钛合金热加工制备方法。变形坯料原始状态为锻态、β热处理态或β均匀化处理状态;变形坯料在电阻炉中加热到T<sub>β</sub>‑30℃~T<sub>β</sub>+15℃,保温时间按材料常规工艺执行;采用棒材轧机或辗环机,对变形坯料施加1火次热变形,总变形量控制在40~80%范围内;热变形后材料在电阻炉中加热到α+β/β相变点以下45℃~15℃,热透后保温1~3h,出炉后采用空冷或水淬或油淬方式冷却到室温;材料按常规工艺进行其余热处理。

18 一种高强、高韧、可焊接高温钛合金及其制备方法,该合金综合性能良好,长期服役温度可以达到550℃,不仅拉伸强度和断裂韧性较高,而且疲劳强度和蠕变抗力优异。该合金加工成形性能良好、焊接性能较佳,可用于制作棒材、板材和铸件,可以采用钣金成形或超塑成形扩散焊连接等方法制备薄壁构件。

19 北京工业大学研制一种近α型高温钛合金的低温轧制及热处理工艺,首先,将在β相区锻造的近α型高温钛合金进行双级球化处理以及在β/(α+β)相转变点以下10~15℃保温55~65分钟后空冷,得到双态组织;然后在α/(α+β)相转变点以下10~20℃的α单相区内进行总变形量60%~70%的热轧;最后依次进行稳定化、逆相变以及时效处理。  提高了高温钛合金的室温拉伸下的强度以及延伸率,在高温延伸率不降低的情况下,提高高温强度。

20 750℃级高温钛合金大规格棒材及其锻造方法,锻造方法包括预热处理、开坯锻造、相变点以下20℃~50℃锻造、相变点以上150℃~350℃锻造、相变点以下20℃~50℃锻造、相变点以上120℃~300℃锻造、相变点以下锻、锻后热处理。 与国际上先进的Ti600和Ti60合金相比,具有国际先进性;可以用来制备组织均匀、性能高且探伤满足AMS‑STD‑2154A级要求钛合金棒材;用来制造航空发动机的压气机盘叶片和机匣等部位。

21 一种用于650℃的铸造高温钛合金及其熔模精密铸造方法,生产出来的铸件无热裂、冷裂、缩松、气孔等缺陷,且室温性能为:抗拉强度≥1100MPa,屈服强度≥950MPa,延伸率≥5%;高温650℃性能为:抗拉强度≥650MPa,屈服强度≥580MPa,延伸率≥8%。

22 一种近α型高温钛合金带材及其制备方法,方法包括:将近α型高温钛合金铸锭锻造,得晶粒尺寸2~3μm板坯;将板坯加热至β转变温度以上150~170℃进行多道次热轧,每道次变形量25%~30%,累计变形量≥60%,得中间坯;将中间坯加热至β转变温度以下20~50℃进行多道次热轧,每道次变形量25%~40%,终轧温度≥700℃,得热轧带;将热轧带再结晶退火,去应力退火,得退火后钛合金带;将退火后钛合金带进行多次冷轧,每道次变形量8%~15%,每次冷轧后退火,得0.3~0.5mm厚钛合金带。

23 江西理工大学研制一种稀土微合金化高温钛合金材料及其制备方法,通过控制合金材料成分的铝当量值,在避免产生硬脆相的同时保证合金的强度,并在该合金材料中添加稀土元素Sc来改变合金的显微组织结构,同时通过调控合金材料中硅化物的析出来提高合金的高温抗蠕变性能,使合金材料在650℃服役的抗蠕变性能优异,具有广阔的应用前景。

24 一种超塑性Ti‑Al基金属间化合物高温钛合金及其制备方法,该制备方法中,钛合金在β凝固成份的基础上,提高Nb的含量形成短程有序结构,提高高温抗氧化性能,最高达到850℃的使用温度。在此基础上,B与Y元素的添加,并且控制添加比例,提高了热加工性能,强化了铸造性能。  所制备出的Ti‑Al金属间化合物在最高达到850℃下的超高温下具有良好的工作性能同时大幅提高了塑性,使其具有超塑性能。能够充分满足航空航天等领域对高温钛合金材料的要求。

25 一种新型双态组织高强韧高温钛合金的加工制造方法,大量α稳定元素(铝(Al)、锡(Sn)、锆(Zr))的添加可以起到强化作用,在提高钛合金强度的同时稳定α相,促进板条α相的析出,有利于热加工过程中板条α相的球化;适量的β稳定元素(钼(Mo)、硅(Si)、钨(W))可以在补充强化的同时提高钛合金持久和蠕变性能;硼(B)与钛(Ti)结合生成TiB相,由于TiB相在钛合金α相和β相中固溶度极低,几乎完全不溶于钛合金基体,而是以短棒状独立存在于晶界处,在热加工过程中可以有效抑制β晶粒的长大。

26 一种高温钛合金及其制备方法,所述钛合金可在600℃的高温下使用。在控制铝当量和钼当量基础上,通过控制合适含量的Nd、Er、Si等元素,实现氧化物颗粒强化和晶界强化实现高温强化。所述钛合金制备方法,该方法通过增材制造微区冶金实现微纳级氧化颗粒物均匀分布,所述合金在600℃具有良好的高温强度和蠕变性能,可在600℃长期使用。

27 一种α型高比模量耐热易成型钛合金,具有高模量、低密度、良好塑韧性和耐热性能,突破了钛合金弹性模量与塑韧性匹配的关键技术,在保证塑韧性的同时具有较高的弹性模量,同时具备低密度和耐高温等优异的性能,在航空航天、舰船装备及兵器工业等领域具有良好的技术应用与市场前景。

28 哈尔滨工业大学研制一种多元增强高温钛基复合材料的制备方法,要解决现有高温钛合金硅化物析出不均匀、容易发生长大导致高温性能恶化的问题。方法:将原料进行预处理,称量;压制合金块,二次加料块;预热;熔炼;热处理。  通过增强相TiB、TiC和Y<sub>2</sub>O<sub>3</sub>的均匀化,实现了硅化物的均匀分布,并且增强相能够抑制对硅化物长大,从而进一步提高合金的抗蠕变性能。  用于制备多元增强高温钛基复合材料。

29 中山大学研制一种耐高温钛基合金及其制备方法,涉及钛合金技术领域。制备方法包括(1)在钛基合金表面镀上一层耐高温金属层;(2)以四乙氧基硅烷、0.05~0.5mol/L硫酸镍溶液、无水乙醇、0.1~0.5mol/L硝酸钾溶液配制电沉积溶液;(3)电沉积制备初始复合薄膜;(4)将步骤(3)得到的钛基合金放入700~1200℃的热处理炉中保温4~7h,炉冷,得到所述耐高温钛基合金;耐高温钛基合金在900℃氧化100h后仍然具有良好的稳定性,质量变化较小。

30 江苏大学研制一种SPS烧结颗粒增强Ti‑Al‑Sn‑Zr系耐高温钛基复合材料及其制备方法,采用“粉末冶金—放电等离子烧结”工艺制备了SiC/GNPs/B<sub>4</sub>C增强Ti‑Al‑Sn‑Zr系钛粉的耐高温钛基复合材料,该方法操作便捷,成本低廉,所获得的钛基复合材料具有优良的抗高温氧化性能,在航空航天、生物医学、海洋工程等领域具有广阔的应用前景。

31 哈尔滨工业大学研制一种耐650℃的微量纳米三氧化二钇添加高温钛合金板材及其制备方法,解决目前耐600℃以上高温钛合金板材短流程制备力学性能差,室温强韧性和高温性能不能良好匹配问题。  同过微量纳米Y<sub>2</sub>O<sub>3</sub>的添加,显著降低铸锭的原始β晶粒尺寸,从而可对铸锭进行960℃多道次直接轧制获得板材,并能够通过铸态合金直接轧制获得高温性能和室温强塑性匹配的高温钛合金板材。具有优异的室温和高温力学性能,展现出优异的服役性能,具有巨大的应用潜力。

32大连理工大学研制一种具有良好增材制造成形性能的高温600℃用高强韧钛合金,通过合金成分设计实现了细化α相提高强度,优化β相含量提高塑性,增强熔体热稳定性,使得该合金600℃高温强韧性得到最大提升,可用于增材制造成形。

33 一种具有良好冷成型性的耐热钛合金及其卷材的制备方法,在塑性较纯钛没有明显降低的前提下,极大的提高了合金的高温性能。该合金应用后,在满足强度等要求的情况下,极大的提高了合金的高温抗氧化性能;除卷材外,也可加工为板、棒、管等不同材料,满足各种需求高塑性、抗氧化性低强度材料的要求。

34 一种耐650℃以上的高温钛合金及其制备方法,对于合金热稳定性能、蠕变性能和疲劳性能的匹配问题,高温钛合金的化学成份更加合理,能更好的控制初生相的含量和次生相的尺寸问题。高温钛合金采用特定的方法制备得到,本申请的高温钛合金的室温和高温的强度、塑性等力学性能优异。

35 大连理工大学研制一种具有良好增材制造成形性能的Ti‑Al‑V‑Zr耐高温高强韧钛合金及其应用,通过合金成分设计实现了钛合金600℃高温强韧性同步提高,该合金主要合金化元素为Zr元素,用于细化α相提高强度,粗化β相提高塑性,增强熔体热稳定性,提高承温能力,可用于增材制造成形。

36 北京工业大学研制一种近α型高温钛合金的锻轧复合加工及热处理工艺,属于钛合金制备技术领域。首先将经β相区锻造得到魏氏组织高温钛合金。在低于其β/(α+β)相转变点以下的980℃保温20min,使内部温度均匀。温度均匀后对合金然后接进行热轧,轧制共三个道次,第一道次下压量10%,第二下道次压量20%,第三道次下压量25%,每道次之间保温5min,轧制结束后采用空冷退火,总计变形量46%,获得具有大量α<sub>p</sub>和极少量α<sub>s</sub>和β的等轴组织结构的高温钛合金板材。之

37 常州大学研制一种提高航空钛合金高温疲劳性能的强化方法,可以在航空钛合金表层引入高幅值的残余压应力,形成纳米晶甚至非晶结构,同时在试样表层形成了结合强度较高的耐高温TiNAlSi涂层,进一步提高了航空钛合金的高温疲劳特性。

38 北京航空航天大学研制一种抗氧化高温钛合金及其制备方法,制备的高温钛合金具有优异的抗氧化性能,同时兼具高的热强性和良好的热稳定性。

39 东北大学研制一种高性能近α高温钛合金及其粉末冶金制备方法,通过混合元素粉末冶金法即混合粉末+压制成坯+烧结+挤压成形+热处理制备具有细小α片层和不连续β/β转变组织构成的新型魏氏组织的高性能近α高温钛合金,其中,β转变组织内析出了高密度的纳米针状α,同时材料利用率接近100%且成本低。所提供的制备方法简单、成本低廉,所得近α高温钛合金材料具有优异的室温和高温力学性能。

40 一种高温、高强钛合金及其加工方法,包括合金成分、制备方法、热变形和热处理等要素,可通过熔炼法和粉末冶金烧结法获得,随后通过热变形和热处理工艺组合获得锻件产品,采用上述工艺制备得到的锻件为双态组织,材料在室温至700℃范围内均具有较高的强度和良好的塑性,可用于制作航空航天关键部件在600~700℃长时使用,也可用于航天飞行器等耐温结构件在700~750℃短时使用。

41 北京工业大学研制一种制备近α型高温钛合金层状组织结构的热加工及热处理工艺,提高了高温钛合金的拉伸性能,使合金的抗拉强度(σ<sub>b</sub>)和屈服强度(σ<sub>0.2</sub>)均得到提高,而且其延伸率(δ)略有升高。

42 上海交通大学研制一种耐700℃高温钛基复合材料板材的制备方法,首先,对钛基复合材料化学成分进行热力学计算得到最佳原位自生微/纳颗粒增强相体系;随后,采用三次真空自耗电弧炉熔炼技术,制备TiB短纤维和稀土氧化物颗粒混杂增强的钛基复合材料铸锭;经β相区开坯锻造,变形量大于50%,随后于β相区等温锻造,最终,在钛基复合材料β相区或(α+β)两相区轧制变形并去应力退火。一种高性能耐高温钛基复合材料板材的制备工艺路线,增强体总体积分数在1.2vol.%‑5vol.%范围内。

43 高温钛合金,钛合金的非限制性实施方案包含基于总合金重量按重量百分比计:5.1至6.5的铝;1.9至3.2的锡;1.8至3.1的锆;3.3至5.5的钼;3.3至5.2的铬;0.08至0.15的氧;0.03至0.20的硅;0至0.30的铁;钛;以及杂质。所述钛合金的非限制性实施方案包含有意添加的硅以及某些其他合金添加剂以实现至少8.9的铝当量值和7.4至12.8的钼当量值,观察到这提高在高温下的拉伸强度。

44 一种适用于650‑750℃高温的铸造钛合金材料及其制备方法,制备时,原材料选用超0A级‑0A级小颗粒海绵钛,合金元素Nb、Mo、Si以中间合金形式加入;Zr以海绵锆的形式加入;Al部分由中间合金带入,不足部分以纯铝加入;中间合金与海绵钛经配料、混料后,压制成电极;电极组焊后经熔炼制成合金铸锭,再浇铸成合金铸件,经热等静压处理,去除内部缩孔后制得成品。 具有良好的铸造和焊接性能,满足航天发动机关键结构件的使用需求。

45 一种用于700~750℃的短纤维增强高温钛合金棒材的制备方法,其棒材的制备方法包括:按所需成分配料压制电极,经2~3次真空自耗熔炼成合金铸锭;将合金锭加热至1180~1220℃,于β相区开坯锻造;再加热至上述锻造后的坯料在β相变点以下30~100℃的范围内反复镦粗、拔长至所需尺寸棒材,其低倍组织为模糊晶,高倍组织可见TiB晶须弥散分布。  制备的棒材经固溶+时效热处理后,拉伸强度较未添加B的棒材明显提高。

46 新疆大学研制一种以多晶多相强化的耐热钛合金及其制备方法。通过多组元、微量添加和复合添加方式,净化合金熔体,细化合金铸锭组织,提高合金再结晶温度,提高合金的强度和抗氧化、抗蠕变性能,达到提高合金使用寿命的目的。

47 新疆大学研制一种钛铝基多晶耐热合金及其制备方法。通过多元合金化改善合金性能;通过微合金化改变合金组织演变路径;通过添加硼、碳细化合金铸锭组织;通过固溶、沉淀强化提高强度、抗蠕变性能,改善耐高温氧化和环境脆化性能;通过热加工、热处理和快速冷却相变强化合金;通过γ(TiAl)的层片状组织提高高温强度、断裂韧性和抗蠕变性能,达到提高使用温度和高温使用寿命的目的。

48 一种耐650℃高温钛合金,采用多元强化方式,添加高Al的同时添加Zr、Sn合金元素,Nb、Mo、Ta等β稳定元素和W、Y,使钛合金获得了良好的高温强度、塑性的匹配,提高钛合金的综合力学性能。

49 一种钛合金高温钎料以及制备方法,工艺相对简单,成本低,产品性能好,能得到厚度为0.05~0.30mm、氧含量小于15ppm的钛合金箔材钎料;独特的材料配比能进一步提高钎料合金的润湿性,同时又不降低钎料的熔点;尤其适用于高温服役复合材料的连接,如在核聚变反应堆材料以及医疗CT机用旋转阳极靶等制备过程中,特别是连接钨钼难熔金属与石墨的真空钎料。

50 江苏大学研制一种提高高温钛合金基复合材料硬度的热处理方法,钛基复合材料的最高显微硬度为1062.08 HV,较烧结态(743.47HV)提高了约42.9%,硬度显著提升。

51 江苏大学研制一种固相原位反应生成耐高温高强度TiC增强钛基复合材料及其制备方法,它由重量份为98.5~99.5的基体以及重量份为0.5~1.5%的碳纳米管(CNTs)组成,两者通过粉末冶金原位反应制备而成,所述的基体由90%TB8合金粉(Ti‑14.26Mo‑2.45Nb‑2.86A1‑0.18Si)和10%的纯Ti粉混合而成,所述的基体与碳纳米管在粉末冶金原位反应过程中生成TiC增强相。  的抗压强度和抗氧化性较TB8有明显的提升。

52 江苏大学研制一种高性能高温钛合金基复合材料的制备方法,其特征是它以90wt.%Ti合金粉为基体以及7vol.%SiCp增强体粉末通过放电等离子烧结原位反应生成TiC及Ti<sub>5</sub>Si<sub>3</sub>增强相来制备的钛基复合材料。复合材料的显微硬度为724.56HV,复合材料氧化增重为1.7305 mg·cm<sup>‑2</sup>,750℃下100h的高温氧化后复合材料氧化膜厚度约为16μm。

53 一种高温钛合金及其制备方法,属于钛合金技术领域。一种高温钛合金,其特征在于,包括以下重量份的原料:氢化钛粉90份、铝粉6.5份、硅粉0.4份、锆粉4份、锡粉2.7份、钼粉0.4份、钨粉0.1~1份。  还提供了上述高温钛合金的制备方法。  通过采用合适粒度的金属粉末以及粉末配比,使得高温钛合金具有更好的力学性能。

54 一种新型650℃高温高强可焊接钛合金,通过适当的成分调整,让Al元素含量超过6%,在近alpha钛合金固溶体基体内形成耐高温热强相a<sub>2</sub>相,同时添加高温强化Si元素,使该钛合金满足  耐高温性能要求。添加Zr元素,使该型钛合金具有良好的冷热加工工艺性能,可成型锻件、宽幅厚板及超薄板材等;可成型复杂精密结构铸件;同时焊接工艺性能优良,可采用电子束焊、激光焊、手工TIG焊等方法焊接,锻件/板材/铸件材料可焊接,具有良好的塑韧性和优异的耐海水腐蚀性能。

55 一种超塑性成形用650℃高温钛合金薄板的制备方法,该方法采用热轧加工,获得超塑性性能优异的650℃钛合金薄板。对半成品板材进行蠕变矫型,退火,酸、碱洗后,获得0.8~2.0mm厚度的650℃钛合金薄板成品。

56 北京工业大学研制一种高温性能优异的硼微合金化高温钛合金及其制备方法,采用真空感应悬浮熔炼的方法合成制备含硼高温钛合金,设计成分配料熔炼,为获得含硼高温钛合金。对获得的合金进行表面处理,随后进行多向近等温锻造,锻造总变形量>70%,初始锻造温度为980℃。对锻造后的含硼合金进行1010℃/1h/WQ的β相区固溶处理。  在保证延伸率的条件下大幅提升了合金的高温强度。

57 耐高温钛合金及其制备方法和应用。合金内部元素分布均匀,稳定性高,且杂质含量低,排除了高低密度夹杂的问题,具有高强度、高韧性和良好的抗蠕变性能的优点,其工作温度高达550℃。

58 一种高温钛合金及其制备方法,属于钛合金领域。该高温钛合金由下述方法制备:将原料制成铸锭后,经锻造和热处理步骤,即制得所述高温钛合金;所述高温钛合金在室温时:抗拉强度≥1120MPa,屈服强度≥1015MPa,延伸率≥8%。本申请的高温钛合金的室温和高温的强度、塑性等力学性能优异。

59 一种耐热钛合金材料及其制备方法,该耐热钛合金由下述方法制备:将原料制成铸锭后,经锻造和热处理步骤,即制得所述耐热钛合金;所述耐热钛合金在650℃时:抗拉强度≥605MPa,屈服强度≥505MPa,延伸率≥18%。本申请的耐热钛合金的室温和高温的强度、塑性等力学性能优异。

60 一种高温钛合金材料及其制备方法,制备:将原料制成铸锭后,经锻造和热处理步骤,即制得所述高温钛合金;所述高温钛合金在650℃时:屈服强度≥650MPa,抗拉强度≥580MPa,延伸率≥12%。合金的室温和高温的强度、塑性等力学性能优异。

61 哈尔滨工业大学研制一种添加氮化锆实现高温钛合金复合强化的方法,通过添加一种新型的晶粒细化剂ZrN,利用ZrN中的Zr元素代替高温钛合金中Zr,细化剂ZrN的加入量取决于高温钛合金中Zr的含量。添加ZrN后,能够有效的细化高温钛合金的晶粒,从而实现钛合金的细晶强化,通过向合金中加入ZrN,在保证合金中Zr元素固溶强化的同时,还可以同时实现细晶强化和第二相强化叠加。  可以有效的提升高温钛合金的力学性能。

62 北京工业大学研制一种Er、B复合微合金化高温钛合金及其制备方法,制备方法包含配料、感应悬浮熔炼、真空浇铸、等温锻造和热处理,最终得到一种Er、B复合微合金化高温钛合金。  制备的高温钛合金其锻态合金在650℃条件下具有优异的性能,此外,还具有优异的室温强度和塑性。此Er、B复合微合金化高温钛合金室温和高温(650℃)强度高,且强韧性匹配良好。

63 一种耐热钛合金Ti60丝材加工制造方法和应用,合金通过不同的热加工和热处理工艺组合,可获得拉伸强度、塑性、剪切强度的不同匹配,可用于制作先进航空航天用铆钉、螺栓、螺母等紧固件,在600~650℃范围内使用。

64 一种在无氧化气氛下500‑600度使用的新型耐高温钛合金。该材料为需要钛合金在高温状态下使用的场合提供了一种新型的材料学解决方案。该合金的实施和产业化会大大推动我国在高端领域对耐高温钛合金材料的商业升级需求。

65 一种高温钛合金棒材的制备方法,制备的Ti55钛合金棒材,经固溶+时效热处理后,棒材的强韧性匹配较好,持久和蠕变强度与热稳定性匹配较佳,断裂韧性较高。  操作方便、工艺可控性较强,制备的Ti55钛合金棒材批次稳定性好。

66 太原理工大学研制一种细化近α高温钛合金晶粒的制备方法,可解决现有近α高温钛合金强度‑塑性‑韧性的匹配性较低的问题,得到的近α高温钛合金可将α相的晶粒尺寸细化至1.2μm,再此尺寸下的合金可获得最优的综合力学性能,其抗拉强度可达1126.3MPa,屈服强度可达1097.5 MPa,延伸率可达18.6%。  可以通过调整低温多道次单辊角轧的工艺参数,再结合后续的β相区或α+β相区快速热处理获得更细的α相晶粒以及强度和韧性都非常高的近α高温钛合金材料。

67 美国RTI国际金属公司研制一种钛合金,其特征在于,在温度升至750℃的条件下,具有良好的抗氧化性、高强度和抗蠕变性,以及良好的冷/热成形能力、良好的超塑性成形性能和良好的焊接性。

68 东南大学研制一种高强度高弹性耐热钛合金及制备方法,具有高强度和较低弹性模量,弹性变形能力(屈服强度与弹性模量比值)优于现有各种高弹性β钛合金,十分适合制作航空航天和机械等领域的轻质耐热高弹性部件。

69 江苏大学研制一种提高TC6钛合金强度及高温稳定性的加工工艺,通过锻造及挤压成型、预拉伸变形、优化的热处理以及深冷处理方法,有效解决TC6钛合金在传统锻造和热处理工艺的缺点,在微观结构上可以诱导位错的增殖,使晶粒更加细小和均匀,在宏观上表现为材料室温以及高温综合力学性能的改善,很好的满足了该种钛合金在航空航天领域的应用。

购买理由

高密度高强度石墨国内外研发现状

    美国POCO Graphite Inc 利用超细粉石墨材料在2500℃以上,压力作用下的蠕变特性,成功开发再结晶石墨。再结晶石墨是在高温高压下使多晶石墨晶粒长大并走向排列而得到的高密度材料,石墨体内的缺陷(砂眼、裂纹等)消失,体积密度可达到1. 85-2.15g/cm3


   日本住友金属公司用MCMB 成功研制体积密度1.98-2.00g/cm3高密度各向同性石墨。日本无机材料研究所在沥青的苯不溶物添加油和1, 2一苯并菲等高沸点有机化合物,加热至350-600,制成粒径>1-100 的MCVIB 在4MPa的成型压力下成型,石墨化后得到高密度各向同性石墨。


  揭斐川电气公司用B阶缩合稠芳多核芳烃(COPNA)树脂为原料,在200 模压成型,固化后,再在400-500的条件下和非氧化性气氛中热压处理,经过后续工作得到高石墨化、导热性和导电性俱佳的高强高密(1. 85g/cm3) 石墨材料。


与发达国家相比还有很大差距

      然而,尽管天然石墨是中国的优势矿物资源,储量、产量、国际贸易量均居世界前位,但中国的石墨产业布局严重畸形的局面却亟待改变。民进中央长期调研发现,长期以来国内石墨产业矿产资源资料落后,生产品级划分不严,浪费严重,基本上处于采选和初加工阶段,技术严重落后,产品绝大部分为普通中高炭矿产品。值得注意的是,日、美等发达国家将天然石墨作为战略资源,却利用中国的廉价原料,深加工成能够在电子、能源、环保、国防等领域应用的先进石墨材料,以极高的价格占领国际市场并返销中国。


      我国石墨主要出口国家分别是美国、日本、韩国、德国等,每年出口量占世界各国总出口量的80%以上。日本是全球最大的石墨进口国,其中98%从我国进口,美国天然鳞片石墨完全依靠进口,其中48%来自我国。我国石墨初级产品的出口国又恰恰是我国高附加值石墨产品的进口国。在我国大量出口石墨初级产品的同时,美、日、韩等发达国家却早早把石墨列为战略资源,严格控制开采,以采代购



高纯石墨    发展高附加值石墨制品的关键

       中国生产的天然石墨产品中,绝大部分是最初级的加工产品。这些初级加工产品,都面临着产能过剩的问题,而产能过剩又压制了价格。伴随初级产品出口为主,中国石墨的高附加值产品研发和生产则明显缺失,随着科学技术的不断进步,高纯微细石墨的用途越来越广。普通的高碳石墨产品已不能满足原子能,核工业的飞速发展急需大量的高纯石墨。


       据2011年不完全统计,中国高纯石墨年需求量约为20万吨左右。国外以其技术优势在高纯石墨方面占据领先地位,并在石墨高技术产品方面对中国进行禁运。目前中国高纯石墨技术只能勉强达到纯度99.95%,而99.99%乃至以上的纯度只能全部依赖进口。2011年,中国天然石墨产量达到约80万吨,均价约为4000元/吨,产值约为32亿元。目前,进口99.99%以上高纯石墨的价格超过20万元/吨。其进出口由于技术壁垒导致的价差非常惊人


加强技术研发,提高产品质量

       高密度高强度石墨较传统石墨除了具有高密度,高强度的强度外,还具有良好的热稳定性。良好的热稳定性是使石墨高温使用中抗氧化性能大幅度提高,特别在模具行业,比传统石墨可延长20-50% 的寿命        


       对于中国石墨行业而言,技术进步是其发展的重心和关键。许多国家,尤其是一些发达国家,不断致力于提高技术水平来开发石墨新产品和新用途,甚至由于多年积累,已经形成寡头垄断的态势。例如氟化石墨主要由美、日、俄生产;膨胀石墨主要由美、日、德、法等国垄断;其中高纯膨胀石墨只有日本生产。


        近几年,我国涌现出许多石墨新技术和优秀科技成果,高纯石墨材料开发与应用取得了可喜的进步。只有不断依靠技术创新提高企业核心竞争力作为生存发展之道,不断培育技术人才,加大科技投入,提高科技转化、创新能力,才是石墨企业发展的根本。  为帮助国内石墨生产企业提高产品质量,发展高端产品,我们特收集整理精选了本专集资料。






    


    

内容介绍

                        石墨提纯 现有工艺存在缺陷


     随着技术的不断发展,通过选矿工艺得到的鳞片状高碳石墨产品己不能满足某些高新行业的要求,因此需要进一步提高石墨的纯度。目前,国内外提纯石墨的方法主要有浮选法、酸碱法、氢氟酸法、氯化焙烧法、高温法等。其中,酸碱法、氢氟酸法与氯化焙烧法属于化学提纯法,高温提纯法属于物理提纯法   


       1、 浮选法:是利用石墨的可浮性对石墨进行富集提纯,适应于可浮性好的天然鳞片状石墨,石墨原矿经浮选后最终精矿品位通常为90%左右,有时可达94%~95% 。使用此法提纯石墨只能使石墨的品位得到有限的提高,是因为部分硅酸盐矿物和钾、钠、钙、镁、铝等化合物里极细粒状浸染在石墨鳞片中,即使细磨也不能完全单体解离,所以采用选矿方法难以彻底除去这部分杂质。        


       2、 酸碱法:是当今我国高纯石墨厂家中应用最广泛的方法,其原理是将NaOH与石墨按照一定的比例混合均匀进行锻烧,在500-700℃氯化焙烧法的高温下石墨中的杂质如硅酸盐、硅铝酸盐、石英等成分与氢氧化钠发生化学反应,生成可溶性的硅酸钠或酸溶性的硅铝酸钠,然后用水洗将其除去以达到脱硅的目的;另一部分杂质如金属的氧化物等,经过碱熔后仍保留在石墨中,将脱硅后的产物用酸浸出,使其中的金属氧化物转化为可溶性的金属盐,而石墨中的碳酸盐等杂质以及碱浸过程中形成的酸溶性化合物与酸反应后进入液相,再通过过滤、洗涤实现与石墨的分离,从而达到提纯的目的。但是此种提纯方法的缺点在于需要高温锻烧,设备腐蚀严重,石墨流失量大以及废水污染严重,且难以生产碳含量99.9%及以上的高纯石墨。        


       3、 氢氟酸提纯法:是利用氢氟酸能与石墨中几乎所有的杂质反应生成溶于水的化合物及挥发物,然后用水冲洗除去杂质化合物,从而达到提纯的目的。使用氢氟酸法提纯石墨,除杂效率高、能耗低,提纯所得的石墨品位高、对石墨的性能影响小。但由于氢氟酸有剧毒和强腐蚀性,生产过程中必须有严格的安全防护措施,对于设备要求严格导致成本升高;另外氢氟酸法产生的废水毒性和腐蚀性都很强,需要严格处理后才能排放,环保环节的投入又使氢氟酸法的成本大大增加,如污水处理稍不到位,会对环境造成巨大污染。      


       4、氯化焙烧法是将石墨矿石在一定高温和特定的气氛下焙烧,再通入氯气进行化学反应,使石墨中的杂质进行氧化反应,生成熔沸点较低的气相或凝聚物的氯化物及络合物逸出,从而达到提纯的目的。由于氯气的毒性、严重腐蚀性和污染环境等因素,在一定程度上限制了氯化焙烧工艺的推广应用。


       5、高温法提纯石墨,是因为石墨是自然界中熔点、沸点最高的物质之一,熔点为3850 士50℃,沸点为4500℃,远高于所含杂质的熔沸点,它的这一特性正是高温法提纯石墨的理论基础。将石墨粉直接装入石墨士甘锅,在通入惰性保护气体和少量氟利昂气体的纯化炉中加热到2300~3000℃,保持一段时间,石墨中的杂质因气化而溢出,从而实现石墨的提纯。虽然高温法能够生产99.99%以上的超高纯石墨,但因锻烧温度极高,须专门设计建造高温炉,设备昂贵、投资巨大,对电力口热技术要求严格,需隔绝空气,否则石墨在热空气中升温到450℃时就开始被氧化,温度越高,石墨的损失就越大。这种设备的热效率不高,电耗极大,电费高昂也使这种方法的应用范围极为有限,只有对石墨质量要求非常高的特殊行业(如国防、航天等)才采用高温法小批量生产高纯石墨。


      (二) 能耗石墨提纯技术 国内最新研制

     据恒志信网消息:针对石墨提纯现有技术存在的问题。武汉工程大学研制成功一种对天然石墨进行高纯度提纯的方法及装置。该方法能耗低,所得到的石墨的纯度高,其装置简单。


       与现有技术相比,新工艺的有益效果是:

       1、工艺新颖、装置简单、能耗低、升温迅速,是采用等离子体炬加热技术,利用热等离子体局部超过4000℃的高温,使石墨原料中的杂质在短时间内充分气化,实现提纯石墨目的,可以实现石墨的连续提纯。


       2、原理与现行高温提纯法一致,但由于是将石墨粉直接送入具有极高温度的等离子体焰流中直接加热,因此热利用率极高。而采用现有高温炉提纯,热能除了加热物料外更多的是在加热炉体,并被散发到环境中。

   

       3、采用新技术工艺,石墨的纯度高(碳质量含量≥98.7%)。初始碳质量含量90% 、粒度100目的石墨,经过一次提纯后碳质量含量98.7% ;经过第二次提纯碳质量含量99.5% 经过第三次提纯碳质量含量99.9%;如再经过几次循环石墨提纯到碳质量含量99.99%。


      资料中详细描述石墨提纯的方法及其装置,其能耗远低于现行高温提纯法。石墨的纯度高,装置简单。


       三)天然隐晶质石墨(矿)剥离提纯方法

       天然隐晶质石墨是我国的优势矿产资源之一,主要用于铸造、石墨电极、电池碳棒、耐火材料、铅笔和增碳剂等方面。隐晶质石墨晶体极小,石墨颗粒嵌于粘土中,很难分离。由于隐晶质石墨原矿品位高(一般含碳60%-80%),部分可达95%,平均粒径。.01-0.1μm,用肉眼很难辨别,故称隐晶质石墨,俗称土状石墨。与鳞片石墨相比,土状石墨碳含量高,灰分多,晶粒小,提纯技术难度大,使其应用范围受到极大限制。在我国,通常都是将开采出来的石墨矿石经过简单子选后,直接粉碎成产品出售。因此天然隐晶质石墨资源得不到充分的利用,甚至盲目出口,造成资源的浪费。鉴于天然隐晶质石墨的技术含量和附加值极低,而我国市场需要的高纯超细石墨则多数依赖进口,开展天然隐晶质石墨的提纯新方法尤为紧迫。


      据恒志信网消息:湖南大学最新研制成功天然隐晶质石墨的提纯新方法,解决了现有技术中天然石墨矿,特别是隐晶质石墨提纯技术难度大、成本高、污染大、资源浪费严重的问题,适用于不同品味、不同矿质的天然石墨的提纯,且成本低,环境污染小,低能耗,简单易行,具有广泛的应用前景。


       天然隐晶质石墨的提纯新方法具有如下优点:

       1、新技术所采用的插层剂原料价格低,可循环使用或回收利用。


       2、新技术对石墨结构无明显破坏,也不会产生明显缺陷,对大尺寸鳞片石墨具有保护作用。


       3、新技术所生产的产品多元化(高碳石墨、高纯石墨、石墨烯和石墨烯纳米片) ,可根据市场需求调整产品结构。


       4、新技术可在现有石墨浮边生产线上增添一定工艺设备进行实施,工艺简单,设备要求低,条件温和,成本低。


       5、新技术不使用酸和碱,污染物产生少,对环境友好。


       6、新技术适用于不同的固定碳含量的天然石墨矿,也可用于与辉钼矿的剥离提纯。


       技术指标:原料:高碳隐晶质石墨粉(固定碳含量为43.2% 200目)

       成品:高纯石墨(碳含量99.95% ),石墨回收率72% 。


     【资料描述】

     资料中详细描述了天然隐晶质石墨的提纯新方法、矿浆液调制方法、超声剥离的矿浆液、浮选、提纯等等步骤、以及生产实施例等等。





           纯度≥99.999% 天然石墨高温提纯新技

      

   【石墨高温提纯技术背景

      石墨作为工业原料,尤其在一些特殊行业以及原子能工业、汽车工业、航天技术、生物技术等高新技术工业,不但对石墨的碳含量要求极高,同时也要求在石墨的成分中不能含有过多的微量元素,必须是99.9%以上的高纯度石墨,然而现在一般的天然石墨含碳量均无法满足这些行业对高纯度石墨的要求,目前对天然石墨采取的提纯法仍是利用石墨的耐高温的性能,从而使用高温电热法提高石墨纯度,由于此工艺复杂,需要建设大型电炉,电力资源浪费严重,同时需要不断通入惰性气体,造成成本高昂。尤其重要一点,是当石墨纯度达到99.93%时,己达到极限,无法使石墨的固定碳含量继续提高。目前对于氯气提纯尚未形成工业化生产。


      现有技术存在工艺复杂、对原料的颗粒选择过大等缺点。国内外有采用高温提纯天然鳞片石墨,即将天然石墨装入己石墨化过的石墨士甘塌内进行石墨化提纯,利用石墨士甘锅具有良好的导电、导热以及耐高温特性,石墨灰粉2700度以上高温气化逸出,该方法能将纯度提高至99.99% 以上,但高温石墨纯化存在纯化时间长、工艺流程复杂、要求较高的温度同时严重浪费电力资源,然而化学提纯石墨的方法由于工艺落后,对于小颗粒的石墨不能较好的回收,对环境造成污染,并且纯度亦不能满足市场对产品的需求。

         

     【高纯度天然石墨的提纯新方法 研制成功】

    据恒志信网消息:针对上述现有技术存在的问题中。国内新研制成功一种纯度高、工艺简单、节省电力资源、利于石墨回收的高纯度天然石墨的提纯方法。是采用高温提纯石墨的方法,经过高温反应、化学提纯、洗涤、脱水后获得高纯度的石墨,利用氧化剂、络合剂与天然石墨进行反应,去除原料中杂质,得到微量元素含量低,性能稳定的石墨。新工艺对含碳量>60%的石墨原料进行纯化,得到纯度大于99.9991%,灰粉<1PPM,微量元素<0.5PPM的石墨,具有工艺简单,易于操作,生产效率高,耗电量低,不需要大型的加工设备,节约生产成本。


   【新技术优点

      在石墨提纯工艺中均采用化学提纯或氧化提纯工艺,对于6000目以上的天然石墨则提纯的纯度很难达到99.9以上。


       1、新提纯工艺利用氧化剂和络合剂与天然石墨原料进行化学反应,去除原料中Si02 A1203 MgO CaO P205、CuO 等杂质,从而生产出微量元素含量低,性能稳定的产品。而现有国内石墨提纯工艺中均采用化学提纯或氧化提纯工艺,对于6000目以上的天然石墨则提纯的纯度很难达到99.9以上。


      2、目前国内大多在提纯过程中采用自来水用于石墨的提纯工艺中,由于一般的水质中均含有Ca2+Mg2+、CL-、Si2+等离子物质,不利于去除石墨中本身所含有的Si02 A1203 MgO CaO P205 、CuO等杂质,新技术方案的工艺中采用经过离子交换树脂处理过的不含Ca2+Mg2+、CL-、Si2+等杂质离子的纯水,更好的去除石墨中所含有的Ca2+Mg2+、CL-、Si2+ 等杂质离子,同时可以使石墨中的pH 值达到6.4-6.9 。从而得到纯度高达99.999% 以上,灰粉<1PPM,微量元素<0.5PPM的石墨。
 

      3、新技术方案工艺中将反应釜内的温度加热至85-90℃,可以是石墨与所加入的氢氟酸、盐酸、硝酸和乙二胺四乙酸与石墨中的所含的Ca2+Mg2+、CL-、Si2+等杂质离子能够进行充分的化学反应,通过洗涤、脱水后,去除石墨中含有的Si02 A1203 MgO CaO P205、CuO等杂质,新技术方案中所选用的温度范围,并按照所述的温度范围进行提纯,能够使提纯达到最佳效果。络合剂具有分散、悬浮作用和很强的络合能力,在较小用量甚至极小用量就能达到需要的络合程度,络合剂还能有Ca2+、Mg2+等金属离子发生络合,形成金属络合物,从而达到去除金属离子的目的。


      4、新技术方案工艺中加入的络合剂能是络合剂与石墨中的Ca2+Mg2+等离子发生络合,形成金属络合物,通过洗涤、脱水去除石墨中含有的Si02 A1203 MgO CaO P205、CuO等杂质,技术方案选用合适的络合剂,并按照所述的比例加入进行提纯够进一步提高纯化的效果.


      5、新技术工艺可对粒度为100-10000目,含碳量>60% 的石墨原料进行纯化,得到纯度为99.999% 的石墨成品,具有工艺简单,易于操作,反应时间短,生产效率高,耗电量低,在提纯过程中不需要大型的加工设备,节约生产成本。所得产品可应用于电子工业、国防尖端工业、化学分析工业、核工业、航天工业等高科技领域。


       【高纯度天然石墨的提纯方法】部分摘要


    提纯步骤为:

    步骤一、取含碳量>60% 的石墨400公斤,放入反应釜Ⅰ内,按石墨的重量百分比依次加入30公斤乙二胺四乙酸、50公斤氢氟酸(浓度40%)、2公斤硝酸(浓度98%)。盐酸(浓度30%),后加入100L水,开机搅拌,转速200转/分钟,搅拌时间20分钟;
        

    步骤二、升温反应,开启反应釜上温控装置,使反应釜内的温度升至85℃,反应4小时,反应过程中每隔50分钟搅拌一次,每次搅拌时间3分钟,搅拌速度200转/分钟,反应完成后,再静置3小时,静置完成后排出反应釜内尾气,制得混合料浆A;


    步骤三、将混合料浆A 置入冷却塔Ⅱ内,向冷却塔Ⅱ内注入重量为混合料浆A两倍量的纯水,形成混合料浆A-2,边注水边搅拌,搅拌速度200转/分钟,搅拌至冷却塔II内的温度降至35℃止,完成降温后,打开冷却塔II 的放料阀,将混合料浆A-2 置入洗涤器Ⅲ内;


    步骤四、将混合料浆A-2置入洗涤器Ⅲ中后,向洗涤器Ⅲ中注入纯水,边注水边洗涤,洗涤器Ⅲ的洗涤转速500转/分钟,洗涤至混合料浆A-2 的pH值呈6.4止,后将洗涤器III的转速设置为1000转/分钟,进行离心脱水,脱水至混合料浆A-2的含水量为20%止,停止脱水,制得混合料浆B;


    步骤五、混合料浆B 重新放入反应釜Ⅰ内,按石墨重量百分比加入80公斤硫酸(浓度98%)、40公斤氢氟酸(浓度40%),然后加入纯水100L,搅拌20分钟,搅拌速度为200转/分钟;


    步骤六、第二次升温反应,开启反应釜的温控装置,使反应釜内的温度升至85℃,反应2小时,反应过程中每隔1小时进行一次搅拌,每次搅拌时间3分钟,每次搅拌速度为200转/分钟,反应结束后,关闭电源,打开反应釜I 上的尾气排放阀,将反应釜I内的废气排出,制得混合料浆C;


      步骤七、
步骤八、步骤九、步骤十、步骤十一、步骤十二

         ...............略      详细步骤请见本资料专集


       步骤十三、将脱水后的混合料浆H 送至烘干设备上烘干,烘干温度为150-350 ℃,烘干后的含水量<0.1% ,碳含量为99.9991% -99.9995%,制得产品;

      

     【资料描述

    资料中详细描述了高纯度天然石墨的提纯技术的制备方法、现有技术所存在的问题,性能和优点、实施例等等。

  欲要了解高纯石墨最新生产方法?            请立即购买本专集
国际新技术资料网

北京恒志信科​​​​技发展有限公​司


      我们的优势    

      国际新技术资料网拥有一支工作态度认真、业务基础扎实、团结协作意识强、专业技术水平过硬的员工队伍。我们以质量、信誉、完善的售后服务为准则,以优质的服务、雄厚的技术力量、先进的情报手段服务于广大客户。公司和自2000年成立以来,与有关科研单位、报社、信息中心共同合作为近万家企业单位、科研院校提供了有效的专题资料服务,得到了广大的企业家、科研工作者的好评

     

     国际新技术资料网由北京恒志信科技发展有限责任公司组建,是专门致力于企业经济信息、科技信息开发、加工整理、市场调查和信息传播的专业化网站,网站发展宗旨是:致力于我国信息产业的建设,及时向企业、科研部门提供最新的国际最领先技术的科技信息情报,有效服务于企业新产品开发、可行性论证和推广。


      们的业

       网站主要提供包括美国、日本、韩国、欧洲各国的专利技术资料、世界排名企业最新技术情报资料收集整理、数据加工、资料翻译,接受企业、科研院所委托专题情报服务。网站主要栏目包括世界科技发展热点的各类先进的新材料石油助剂、化工助剂、建筑涂料,粘合剂 肥料配方,金刚石砂轮,金刚石锯片,磁材,金属表面处理,水处理及水处理剂等新技术工艺配方

发展无止境,创新无止境。国际新技术资料网以不断追求创新和技术进步为动力,以完善质量保证和良好服务为根本,以诚实、信誉为宗旨,竭诚与各界朋友、新老客户诚信合作,共创辉煌!