高性能膨胀石墨、可膨胀石墨制备技术工艺配方资料精选
全国订购热线:13141225688 在线订购!
2024新版《高性能膨胀石墨、可膨胀石墨制造工艺配方精选汇编》
本篇专辑精选收录了国内外医药中间体最新技术工艺配方技术资料。涉及国内外著名公司、科研单位、知名企业的最新专利技术全文资料,工艺配方详尽,技术含量高、是从事医药产品加工研究生产单位提高产品质量、开发新产品的重要情报资料。
【项目数量】70项
【资料页数】954页
【资料内容】制造工艺及配方
【电子版价格】1680元 (PDF格式 邮件传送)
【订购电话】131-4122-5688 136-4136-0810
【联 系 人】 梅 兰 (女士)
1 一种制备伏诺拉生的新工艺及其中间体
包括如下步骤:5‑(2‑氟苯基)‑1‑(吡啶‑3‑基磺酰基)‑1H‑吡咯‑3‑甲醛、N‑甲基苄胺、还原剂在有机溶剂中反应,得到化合物2或其酸式盐,经脱苄基反应后,得伏诺拉生。通过生成酸式盐中间体,纯度更高,不需进一步纯化即可进行下一步反应,反应过程操作简便,纯度高、收率高,总收率超过90%。
2 巴洛沙韦脂关键母核中间体立体异构形式转变的制备方法
S1:向三口烧瓶中加入化合物1和反应溶剂,搅拌均匀;S2:在碱性条件下反应,升温,并反应一段时间;S3:反应结束后,使其缓慢降温,然后进行过滤,过滤后,反应溶剂打浆,进行过滤、干燥处理,最后可以得到化合物2。制备方法操作简便,反应条件比较温和,所使用的的化学原料和溶剂便宜易得,收率较高,适合工业化生产。
3 一种玛巴洛沙韦中间体的制备方法
步骤:S1:化合物Ⅱ中加入溶剂乙酸乙酯,加入化合物III,1‑丙基磷酸酐乙酸乙酯溶液,控温10~30℃滴加甲磺酸,滴加完毕后升温至60~70℃反应18~24h,反应监测至反应物II剩余至5%以下,视为反应完毕;S2:在S1步骤反应完毕后,降温至40℃以下,加入氯化锂,升温至65~75℃保温反应,进行第二次加热反应36~40h,反应监测生成的中间态小于0.2%以下视为反应完毕;S3:在S2步骤反应完毕后,降温至20~40℃,加入异丙醇搅拌析晶,降温至10~20℃,搅拌打浆3~4h,过滤,先用水洗涤,再用异丙醇洗涤得到化合物I。减少了三废的产生,环境友好,提高了收率,降低了成本,简化了步骤,所得产品纯度高,有利于工业化大生产。
4 一种合成阿地溴铵中间体的改进工艺
合成阿地溴铵中间体的改进工艺,所述改进方案为:2‑溴噻吩和镁屑制备格氏试剂2‑噻吩基溴化镁,缓慢滴加草酸二甲酯的无水四氢呋喃溶液,反应2~4h,冰水浴下,向反应液中缓慢滴加酸,萃取,干燥,减压蒸干溶剂,洗涤,得阿地溴铵中间体2‑羟基‑2,2‑二(2‑噻吩基)‑乙酸甲酯纯品。本工艺具有操作简便,收率高和成本低等优点,适合工业化生产。
5 非唑奈坦中间体及非唑奈坦的制备方法
通过保护基对初始原料的胺基进行保护,减少了副产物的生成,制备的非唑奈坦中间体和非唑奈坦的收率高,降低了物料成本。发明人采用含有烷基醇的溶剂进行胺基保护基的脱除,反应条件温和、易操作,避免使用酸、碱等试剂脱除保护导致消旋体杂质产生。获得的非唑奈坦中间体和非唑奈坦产物无需进行手性拆分,通过析晶纯化精制即可得到高手性纯度的产品,纯化精制操作简单,简化了整体制备工艺,适宜进行产业化放大生产。
6 一种阿福拉纳关键中间体的制备方法
通过中间体A在甲基三苯基氯化膦、缩合剂存在下,在20℃‑50℃温度条件下,经过反应制得阿福拉纳中间体化合物I,该方法具有收率高、纯度好、操作简便、三废少、适合工业化生产的特点。
7 一种N-(8-[2-羟基苯甲酰基]-氨基)辛酸钠及其中间体的制备方法
该中间体由式(Ⅱ)化合物在酸催化剂和2,6‑二叔丁基对甲酚存在下,于极性溶剂中水解得到,其中,式(Ⅱ)化合物中R为直链或支链烷基;N‑(8‑[2‑羟基苯甲酰基]‑氨基)辛酸钠的制备在前述中间体的基础上成盐即可制成。使用极少量的2,6‑二叔丁基‑4‑甲基苯酚即可避免或减少式(Ⅰ)化合物制备过程中有色杂质的产生,制得白色或类白色的式(Ⅰ)化合物,HPLC纯度大于99.9%,克服了2,6‑二叔丁基‑4‑甲基苯酚不可用于避免或减少式(Ⅱ)化合物水解过程中有色杂质产生的技术偏见。
8 一种顺式手性中间体(2R,6S)-2,6-二甲基哌啶-4-羧酸乙酯的制备拆分方法
该方法由化合物A10经酯化,氢化还原,手性酸拆分制备得到。较现有的生产技术,该方法的起始物料价格便宜易得,实验操作及后处理简单,适合放大生产。
9 一种制备利奈唑胺关键中间体(S)-5-((苄基氨基)甲基)噁唑烷-2-酮的方法
制备利奈唑胺关键中间体(S)‑5‑((苄基氨基)甲基)噁唑烷‑2‑酮的方法。该方法以(S)‑2‑环氧氯丙烷为起始原料,经过与邻苯二甲酰亚胺的选择性开环氨化、苄胺取代胺化反应以及噁唑酮环合反应制备(S)‑5‑((苄基氨基)甲基)噁唑烷‑2‑酮。提供的新方法反应条件简单易控,反应时间大大缩短,产品总收率高,适合工业化生产。
10 一种聚多卡醇的制备方法及其中间体
步骤S3:式(III)化合物在碱存在下与式(II)化合物发生反应,反应得到式(I‑1)化合物;步骤S4:步骤S3得到的式(I‑1)化合物经脱保护得到聚多卡醇;其中,R1为卤素、对甲苯磺酰酯基或甲磺酰酯基;R2为甲基、乙基、甲酰基、乙酰基、甲磺酰基、苄基、苄氧羰基、苄酰基、苯酰基或苯磺酰基。提供的制备方法具有操作简单、反应条件温、工艺稳定以及纯度高等优势。
11 一种瑞色替罗中间体及其制备方法以及瑞色替罗的制备方法
提供的瑞色替罗中间体活性较高,在关环的同时可以进行水解,无需额外对氨基进行保护和脱保护的步骤,从而缩短合成路线。提供的瑞色替罗的制备方法合成路线短,经过5步反应即可制备得到瑞色替罗,可显著提高瑞色替罗的生产效率;使用的试剂价格便宜,可大幅度降低生产成本和固废及废水量;所得瑞色替罗产物易于分离提纯,有利于减少精制次数,提高收率和生产效率。
12 环肽毒素α-Amanitin和/或Amaninamide的制备方法、中间体及应用
提供了一种环肽毒素类化合物α‑Amanitin和Amaninamide的全合成方法,所用原料以及试剂容易通过商业化途径购买,中间体稳定,反应条件温和、操作工艺简便,分离纯化工艺具有很好的可操作性,收率高,具有重要的参考和实用价值,能够实现α‑Amanitin和Amaninamide的克级规模制备,具有良好的工业化前景,制备方法在环肽毒素合成领域具有显著的应用价值。
13 一种连接基药物偶联物中间体的制备方法
选用甲醇、或甲醇和水的混合溶剂作为制备化合物I的反应溶剂,反应收率提高。制备方法具有如下一个或多个优点:选取甲醇作为反应溶剂,制备化合物I的收率更高,降低了后处理难度。
14 一种抗体偶联药物的中间体的制备方法
包括如下步骤,将包含化合物I和主控杂质的混合物,在高压制备色谱条件下进行分离,色谱柱为动态轴向压缩柱;固定相为未键合的硅羟基;流动相为醇类溶剂和卤代烷烃类溶剂的混合溶液。制备方法可实现化合物I和主控杂质的有效分离,从而提升化合物I的纯度,更好地控制后续合成的抗体偶联药物的质量。
15 一种奥美沙坦酯中间体的合成方法
包括将化合物3和化合物4在丙酮溶剂中,在有缚酸剂存在下,在相转移催化剂的作用下,于回流温度下进行以下反应式所示的反应,从而生成化合物5和48;其中,所述缚酸剂是碳酸铯;和所述丙酮溶剂的含水量为0.04%‑0.5%。本发明还提供了利用得到的化合物5合成奥美沙坦酯的方法。本发明的方法能够显著降低奥美沙坦酯的合成中化合物4的降解,从而降低化合物5的重结晶等纯化工序的压力。本发明的方法能够高收率、高纯度地合成化合物5以及奥美沙坦酯。
16 屈螺酮中间体的制备方法
步骤:将三羟基酮与R<subgt;1</subgt;COX<subgt;1</subgt;进行酰化反应,再与R<subgt;2</subgt;X<subgt;2</subgt;进行醚化反应,得到化合物A1;将化合物A1在氧化剂和催化剂存在下,进行5,6‑环氧反应,得到具有5,6‑β环氧结构的化合物A2;由化合物A2制备化合物Ⅰ,即所述屈螺酮中间体。本发明在甾环的7位用大位阻保护基的方法,再环氧化得到构型单一的5,6‑β环氧物,缩短了反应步骤,避免了7‑位羟基转位使用强酸性强氧化性的高氯酸,既提高了工艺的安全性,又提高了收率。
17 一种β-内酰胺类化合物的中间体的纯化方法和制备方法
包括向式(I)化合物的粗产物中依次加入第一份异丙能够获得具有高的收率和高的纯度的式(I)化合物,其无需进行预备性分离可直接用于单环β‑内酰胺类抗生素的制备。
18 一种米诺地尔中间体的制备方法
米诺地尔中间体为2,4‑二氨基‑6‑氯嘧啶,包括:制备6‑氯嘧啶‑2,4‑二胺、胍的无水乙醇溶液和甲醇钠甲醇溶液并依次加入到反应容器中,密封后加热回流,反应后的产物经过制备色谱分离即得2,4‑二氨基‑6‑氯嘧啶。优点:通过选取合适的合成路线,两步合成就能获得目标产物,操作简单;提高了产品纯度和收率,原料选用neat型底物,既可促进底物的转化又降低了试剂成本;同时所用试剂皆廉价易得,具备对环境友好的特点,转化率达99.8%,副产物少,可有效控制产品质量。
19 一种5-氟尿嘧啶三磷酸脱氧核苷中间体及其制备方法
在干燥条件下将三磷酸核苷反应前体溶于有机溶剂中,逐滴加入氟化试剂,在室温下搅拌反应;减压蒸馏脱除溶剂,得黄色粘稠物,加入有机溶剂打浆,降温过滤得到白色固体产品。优点在于:制备的中间体结构稳定,纯度高;通过直接过滤法代替传统的硅胶柱层析法收集产品,极大缩短产品合成时间和生产周期,同时有效减少有机溶剂使用量,过滤后的溶剂可直接回收套用,避免环境污染;填补现有三磷酸核苷中间体相关合成方法的空白,可应用于后续合成工艺研究,为其进一步用途研发打下基础。
20 脒定类化合物二羟乙基磺酸盐及其中间体的制备方法
包括以下步骤:(1)在溶剂中,在钨酸的存在下,将如式I所示的氰基苯酚与铵盐进行加成反应,得到如式II所示的羟基取代苯甲脒;(2)在溶剂中,在碱性条件下,如式II所示的羟基取代苯甲脒与Br(CH2)nBr进行缩合反应,得到如式III所示的脒定类化合物;(3)在溶剂中,如式III所示的脒定类化合物与羟乙基磺酸进行成盐反应,得到如式IV所示的脒定类化合物二羟乙基磺酸盐。所用试剂温和、绿色且便于存储,同时反应还具有操作简单,反应时间短和收率高的特点。
21 一种共轭多烯中间体化合物及其制备方法和应用
共轭多烯中间体化合物为1,3,3‑三甲基‑2‑(3,7‑二甲基‑1,3,5,7,9‑癸五烯基)‑1‑环己烯类化合物。本申请的共轭多烯中间体化合物,通过简单的复分解反应即可生成β‑胡萝卜素,制备过程简便快捷、产率高,且副产物少,为β‑胡萝卜素的合成提供了一种新的方案和途径。
22 一种依拉司群重要中间体的制备方法
该方法包括以下步骤:(1)化合物1经氧化转化为中间体2;(2)化合物2与4‑甲氧基‑2‑硝基苯基硼酸发生不对称加成反应,得到中间体3;(3)化合物3结构中的羰基被还原为亚甲基后,生成中间体4;(4)化合物4经过Pd/C催化氢化反应得到化合物5。与现有技术相比 提供的工艺路线具有如下优势:原料价格低廉易得;反应路线简短,收率较高;无需通过手性拆分,原子经济性好,显著降低生产成本。
23 一种阿莫奈韦中间体的制备方法
该方法包括向4‑硝基苄胺肟的原甲酸三乙酯溶液中加入质子酸的步骤。该方法反应条件温和,操作简单,所得产物纯度好,收率高。
24 一种制备西诺氨酯关键中间体的方法
步骤:S1:将邻氯苯乙酮、四氮唑、乙腈、四丁基碘化铵和过氧化氢叔丁醇混合升温至70‑80℃反应;S2:反应3‑8小时后降温至0℃,加入硫代硫酸钠,终止反应,萃取得到粗品;S3:将步骤S2得到的粗品萃取得到产物III‑b。制备方法仅经1步反应,无需制备溴代中间体I,由化合物I制备西诺氨酯关键中间体III‑b的合成工艺,无需使用溴试剂,利于工业化生产,利于环境保护,分子经济性好。
25 一种中间体5-氟-3’-O-乙酰基-5’-O-叔丁基二甲基硅-2’-脱氧尿苷及其制备方法
在干燥条件下将5‑氟脱氧尿苷溶于碱性溶液中,加入叔丁基二甲基氯硅烷在室温下搅拌,再加入乙酰化试剂搅拌反应,然后减压蒸馏收集残渣溶于二氯甲烷,用饱和碳酸氢钠和水洗涤,干燥有机层然后减压蒸馏收集残渣,重结晶得到白色固体产品。本发明的优点在于:本发明制备的中间体结构稳定,纯度高;通过重结晶技术代替传统的硅胶柱层析法收集产品,极大缩短产品合成时间和生产周期,同时有效提高产品收率;填补现有三磷酸核苷中间体相关合成方法的空白,可应用于后续合成工艺研究,为其进一步用途研发打下基础。
26 一种尼拉帕利中间体的制备方法
将合成并拆分后剩余的(R)‑3‑(4‑溴苯基)哌啶通过加入叔丁氧羰基保护基之后,在溶剂条件下与叔丁醇钾发生消旋反应转换成S构型,循环2次即能将收率从原来的25%提高到53%以上。本发明克服了现有技术无法得到高收率高纯度的S构型化合物及回收利用等问题,具有操作较为简便、产品纯度较高、反应温和、节约成本适合工业化生产等优点。
27 罗沙司他及其中间体的制备方法
涉及罗沙司他及其中间体的制备方法。参照下述合成路径进行合成:其中,R<subgt;1</subgt;选自C1‑C6烷基。该制备方法避免使用硝基化合物,避免了引入基因杂质,提高了药品安全性,也避免了使用贵金属,大幅度降低了生产成本;同时,该制备方法反应条件温和,反应时间短,收率也大大提高。
28 一种帕利哌酮及其关键中间体的合成方法
先由2‑氨基‑3‑苄氧基吡啶与α‑乙酰基‑γ‑丁内酯经环合反应得到9‑(苄氧基)‑3‑(2‑羟乙基)‑2‑甲基‑4H‑吡啶并[1,2‑a]嘧啶‑4‑酮,再经卤化和氢化反应得到中间体,最后与6‑氟‑3‑(4‑吡啶基)‑1,2‑苯并异噁唑经缩合反应得到帕利哌酮;本发明所提供的合成方法原料易得,操作简便,工艺路线短,在制备该中间体的环合反应中未使用对甲苯磺酸作为催化剂,在卤化反应中也未使用高污染试剂三氯氧磷,同时在氢化还原时用卤化锌试剂能够降低脱卤杂质产生,产品质量易控且收率高。
29 一种恩替卡韦中间体六及其制备方法
包括以下步骤:先将恩替卡韦中间体五(N5)采用非均相反应,反应完全进行分层除去无机盐和氧化剂,而后加碱洗涤,除去保护基的杂质,得到纯度大于等于99.8%的恩替卡韦中间体六。本发明采用非均相反应,将恩替卡韦中间体五(N5)转换为恩替卡韦中间体六(N6),反应完全并分层后,除去无机盐和氧化剂,通过加碱洗涤,除去脱保护基的杂质,从而提高产品的纯度,并且才用非均相反应,能在接近中性的条件下反应,脱保护基的杂质相对较少,从而提高了产品的收率,可实现达到纯度99.8%,收率达到93%。
30 一种1H-吡唑并[3,4-b]吡啶-4-胺中间体的制备工艺
包括具体步骤如下:以4‑溴‑7‑氮杂吲唑,4‑溴吡唑并[3,4‑B]吡啶为起始原料,乙醇或四氢呋喃为第一反应溶剂,滴加水合肼(80%),反应生成1H‑吡唑并[3,4‑b]吡啶‑4‑联胺;1H‑吡唑并[3,4‑b]吡啶‑4‑联胺在水或乙醇第二反应溶剂中,经雷尼镍催化还原,回流反应生成1H‑吡唑并[3,4‑b]吡啶‑4‑胺,本发明的工艺路线反应条件温和、工艺流程简便,对设备的要求比较低,所得到产物得纯度高,有利于工业化生产。
31 一种盐酸安罗替尼中间体的合成方法
步骤:(3)将化合物02加入溶剂A中并加入还原剂,反应完毕后浓缩,加入水,调节pH值,萃取,收集有机相,减压浓缩后降温析晶过滤得到化合物03;(4)将化合物03加入溶剂B中并加入碱和氯代物,反应完毕后,用碳酸钠洗涤,收集有机相,浓缩后得到盐酸安罗替尼中间体化合物04。本发明提供的合成方法工艺路线简单、成本低廉、适宜工业化生产。
32 乌帕替尼关键手性中间体的制备方法
[(p‑cymene)LRuCl]Cl或[(C<subgt;6</subgt;H<subgt;6</subgt;)LRuCl]Cl为催化剂,L为双齿手性磷配体,不对称氢化不饱和四取代羧酸得到乌帕替尼的关键手性中间体。本发明手性磷‑钌‑络合物价格便宜,转化数高,具有卓越的催化活性和对映体选择性,且其合成前体都是商业可得且制备过程简单,有利于工业化。
33 一种细胞毒素中间体的共结晶体及制备方法
首次找到的Fmoc‑DUO‑5共结晶体,并提供了其制备方法,解决该化合物在药物研究过程中结构确证的难题,为Fmoc‑DUO‑5和DUO‑5的绝对构型提供了有力证据。
34 一种阿兹夫定中间体的合成方法
为了解决提高产物收率的问题,提供一种阿兹夫定中间体的合成方法,该方法包括在有机溶剂中,吸水剂的存在下,对式IV化合物中的羟基进行酯化保护,氮气保护下,在碱性环境中将酯化保护后的式IV化合物与式III化合物3‑氯丙酰胺发生置换反应,生成式II化合物,式II化合物与碳酸二乙酯发生脱水缩合反应后,再进行水解反应还原酯,得到式I化合物;本发明具有副产物生成较少、产物收率高、反应条件简单等优点。
35 一种维生素E中间体2,3,5-三甲基苯醌的制备方法
在氧化催化剂的作用下,2,3,5‑三甲基苯酚醚化物(Ⅱ)与氧化剂发生氧化反应,得到2,3,5‑三甲基苯醌(Ⅰ);所述氧化催化剂由二价铜催化剂和质子酸组成;所述氧化剂为空气或者氧气。该方法可高收率的制备2,3,5‑三甲基苯醌,采用空气作为氧化剂,绿色环保。
36 一种尼罗替尼中间体3-(4-甲基-1H-咪唑-1-基)-5-(三氟甲基)苯胺的精制纯化方法
包括一精、成盐、游离精制的步骤,得到3‑(4‑甲基‑1H‑咪唑‑1‑基)‑5‑(三氟甲基)苯胺中间体合格产品。该精制方法操作简单,适合工业化生产,获得3‑(4‑甲基‑1H‑咪唑‑1‑基)‑5‑(三氟甲基)苯胺中间体单个杂质≤0.10%,炙灼残渣低于0.05%,有利于提高尼罗替尼原料药的产品质量。
37 一种氟苯尼考中间体环合物的制备方法
以硝基乙醇为原料,与Evans手性辅基反应,得到化合物Ⅰ;化合物Ⅰ与对甲砜基苯甲醛,在碱催化条件下,进行缩合反应,得到化合物Ⅱ溶液;化合物Ⅱ在氢氧化锂乙醇环境中,醇解得到的化合物Ⅲ;化合物Ⅲ经硼氢化钠还原,得到化合物IV;化合物IV与二氯乙腈经环合反应,得到氟苯尼考中间体环合物。氟苯尼考中间体环合物的制备方法,能够简化制备工序,降低动力消耗,提高原料利用率,有效提高中间体环合物的收率;且在制备过程中能够避免引入铜离子和硫酸钠,降低危废处理压力,降低综合生产成本。
38 一种吡托布鲁替尼中间体及其制备方法
吡托布鲁替尼中间体具有式IV所示结构,其中,X选自Cl、Br或I。通过式IV所示结构作为关键中间体制备吡托布鲁替尼的合成方法简单、温和,合成路线短,反应收率高,适合大规模工业化生产。
39 一种替格瑞洛中间体TK-1母液中回收中间体TK-1的方法
将TK‑1结晶母液进行浓缩,得到浓缩母液;将浓缩母液搅拌析晶后固液分离,固体产物干燥后溶解于乙腈中,得到粗品溶液;将粗品溶液降温至第一温度进行保温;将保温后溶液固液分离,得到液相产物;将液相产物浓缩,浓缩物溶解于良溶剂中,得到浓缩物溶液;向浓缩物溶液中加入不良溶剂,析出固体产物,固液分离后将固体产物干燥,得到中间体TK‑1。能够提高中间体TK‑1的摩尔收率,降低中间体TK‑1生产成本,同时降低中间体TK‑1母液后处理压力,减少母液无害化处理费用,减轻环保压力。
40 一种二氢嘧啶酮并嘧啶类化合物的制备方法及中间体
提供了两种新的用于合成二氢嘧啶酮并嘧啶类化合物的中间体——化合物F、G,通过新中间体化合物F和G,该制备方法避免采用有毒的试剂和复杂的设备,且制备和后处理操作便捷;进一步地,还能达到与现有技术相当的收率和纯度,更有利于工业化的应用。
41 一种艾拉莫德中间体的制备新方法
以3‑甲磺酰胺基‑4‑苯氧基苯甲醚和氯乙酰氯为原料,全氟叔丁醇为溶剂,D72强酸性大孔树脂为催化剂,合成a‑氯‑2‑甲氧基‑4‑甲磺酰胺基‑5‑苯氧苯乙酮后,和氨反应得到艾拉莫德中间体即a‑氨基‑2‑甲氧基‑4‑甲磺酰胺基‑5‑苯氧苯乙酮。本发明在极大地提高收率和纯度的同时,克服了现有工艺在安全生产、环境保护和清洁生产上的不足,路线简单,反应安全度高,后处理方便,且有效地降低了生产成本,适合规模化生产。
42 抗艾滋病药物艾诺韦林中间体的制备方法
具有式I所示结构的中间体的制备方法。在目前已知的艾诺韦林中间体的合成方法中,大多涉及剧毒的氰化试剂和昂贵的重金属催化剂,具有工业化难度大、安全环保要求高、产生的剧毒危废处理困难等缺点。制备方法可以通过缩合氧化反应和酰胺脱水反应高效安全地制备艾诺韦林关键中间体,从而有效规避氰化试剂和重金属催化剂的使用。同时该路线反应条件温和,收率高,具有极好的工业化前景。
43 一种匹妥布替尼中间体的合成方法
包括以下步骤:1)将(R)‑1,1,1‑三氟丙烷‑2‑醇和卤化剂进行卤代反应得到式a化合物,其中,X表示氟、氯、溴或碘;2)将步骤1)得到的式a化合物和水合肼进行反应制备得到匹妥布替尼中间体(1S)‑2,2,2‑三氟‑1‑甲基乙基]盐酸肼。提出以(R)‑1,1,1‑三氟丙烷‑2‑醇为起始原料进行制备匹妥布替尼中间体。本发明所述合成方法简单安全,无需提供高压反应环境,无需添加金属催化剂,也无需氢气参与反应,制备得到的匹妥布替尼中间体收率高、纯度高,整体危险性低、成本低,适合大规模工业化生产。
44 一种高纯度阿达帕林中间体6-(对甲苯磺酰氧基)-2-萘酸酯的制备方法
步骤为:先以6‑羟基‑2‑萘甲酸为原料,在酸和醇条件下进行酯化反应,反应结束后加水析晶,再以混合溶剂进行重结晶得到中间体6‑羟基‑2‑萘酸酯,中间体进一步在有机溶剂和碱性条件下和TsCl进行酰化反应,反应结束后滴加醇类溶剂析晶制得目标产物。本发明的制备方法制备成本低、反应条件温和、操作安全,产品收率和纯度较高,且所用各个物料廉价易得,有利于工业化生产。
45 一种头孢地尔及其中间体的制备方法
使2‑氯‑3,4‑二羟基苯甲酸和2‑(吡咯烷‑1‑基)乙烷‑1‑胺在聚乙二醇和水的混合溶液中、在缩合剂和碱存在下,发生缩合反应,然后加入碱、卤化盐和羟基保护试剂,上保护基反应,生成式(Ⅰ)所示化合物,式(Ⅰ)中,R为羟基保护基;该方法不仅能够以较好的步骤合成目标产物,而且步骤较短,工业废水少,尤其是还能够获得优异的总收率,适于工业化生产,可以用于制备头孢地尔的工艺中。
46 制备乌帕替尼及其中间体的方法
采用‑Cl、‑CH<subgt;3</subgt;、‑OCH<subgt;3</subgt;等基团对合成乌帕替尼的中间体上的保护基苄氧羰基(‑Cbz)的4‑位碳进行修饰,修饰后的苄氧羰基参与乌帕替尼的合成,取得了意想不到的技术效果。发明人发现,通过采用本发明的方法,可以在乌帕替尼API的后处理中轻松消除产物中的色素,得到白色固体产物,提高了API的品质,使API的颜色符合质量标准,同时避免了在最后的API纯化环节中使用繁琐的柱层析操作,对乌帕替尼原料药的工业化生产具有巨大的促进作用。
47 制备芦可替尼中间体的方法
步骤1,将外消旋体化合物Ⅱ与作为拆分剂的化合物Ⅲa或化合物式Ⅲb进行成盐反应,经分离分别得到化合物Ⅳa或化合物Ⅳd;步骤2,将步骤1得到的化合物Ⅳa或化合物Ⅳd用碱处理,得到化合物Ⅰ,即芦可替尼中间体。通过本发明的方法可得到e.e.值高于99.5%的化合物Ⅰ。本发明提供的制备方法反应条件温和,后处理简单,无需特殊的试剂,收率显著高于现有技术方法,非常适合工业化生产。
48 一种阿普斯特中间体的制备方法
以(R)‑1‑(3‑乙氧基‑4‑甲氧基苯基)‑2‑(甲磺酰基)乙胺为原料,无水硫酸铜为催化剂,高锰酸钾为氧化剂,氨气或者含氨的溶剂保护下,在进行伯胺氧化为亚胺,再使用硼氢化钠作为还原剂,用N‑乙酰基‑L‑亮氨酸拆分,甲醇精制,工艺反应温度无高温或者低温,无加压,反应生成的杂质少,杂质可控,每步骤收率高,纯度好,伯将没有用的(R)‑1‑(3‑乙氧基‑4‑甲氧基苯基)‑2‑(甲磺酰基)乙胺转化为阿普斯特关键手性中间体(S)‑1‑(3‑乙氧基‑4‑甲氧基苯基)‑2‑(甲磺酰基)乙胺,收率大幅提高,可以重复回收至无法回收为止。
49 一种制备非奈利酮及其中间体的方法
采用此中间体制备非奈利酮,可避免不适合工业化生产的钯碳加氢还原,无需昂贵试剂和特殊设备,能耗低;反应条件温和,杂质产生较少,工艺稳定,产品纯度高,适合大规模工业化生产。
50 一种基于连续流装置的对乙基苯丙酮中间体的合成工艺
首先将路易斯酸与丙酰氯及溶剂按照一定当量比配制得到溶液A,再将乙基苯与溶剂按照一定当量数配制得到溶液B,利用一种连续流装置制得对乙基苯丙酮。本发明,基于连续流装置具有比表面积大,收率高、稳定性高、选择性高、低能耗、接触时间短、副产物少、快速放大等优点,本发明与传统釜式反应相比,无需加热整个釜体,所消耗的能量要少,且单位时间内进行的反应液少,更具安全性,且可重复性高,采用本发明提供的连续流装置制备得到的对乙基苯丙酮能得到纯度为98%以上,收率为95%以上。
51 一种屈螺酮17位侧链中间体的制备方法
以式(II)所示的3β,5‑二羟基‑6β,7β,15β,16β‑二亚甲基‑5β‑雄甾烷‑17‑酮为原料,其结构上的17位羰基与格氏试剂发生亲核加成反应得到式(Ⅲ)所示的屈螺酮中间体17α‑(3‑羟丙基)‑6β,7β,15β,16β‑二亚甲基‑5β‑雄甾烷‑3β,5,17β‑三醇,即得屈螺酮17位侧链中间体,其反应式如下:本发明制备方法高效,操作简单,生产成本低,反应条件温和,反应选择性好等优点。
52 一种制备MRX-4的中间体3-氨基异噁唑磷酸酯及其制备方法
制备耐药革兰氏阳性菌感染的噁唑烷酮类抗生素MRX‑4的关键中间体3‑氨基异噁唑磷酸酯的制备方法。包括如下步骤:S1、将3‑氨基异噁唑加入溶剂中,10‑30℃条件下搅拌至溶清;依次加入亚磷酸酯和卤代烷烃,在‑10至30℃温度条件下加入缚酸剂反应,直至反应完全、原料消失为止;S2、将步骤S1的反应液调节至中性、加入水,水层反提,合并有机相并浓缩、结晶得到3‑氨基异噁唑磷酸酯。本制备方法的工艺条件温和、工艺简洁、原料存储运输稳定性和安全性高,而且收率高、成本低,污染少,适合工业化生产,社会和经济效益高。
53 一种3-羟基-7-氟-1-萘酚的合成方法、合成中间体和用途
包括将4‑羟基‑6‑氟‑2‑萘甲酸甲酯的羟基进行苄基保护,然后将产物的酯基水解成羧基,得到水解产物;将水解产物、叠氮磷酸二苯酯、三乙胺和甲苯混合,加热预定时间后,加入盐酸并持续加热进行重排,得到重排产物;将所述重排产物溶解于稀硫酸中,加入亚硝酸钠水溶液进行重氮化反应,然后加热反应产物进行重氮基的羟基化,反应完毕,得到3‑羟基‑7‑氟‑1‑萘酚。提供的合成方法,以通过原料、路线的选择获得得率高、成本低的效果;提供的中间体性能稳定,可以作为成品买卖,为3‑羟基‑7‑氟‑1‑萘酚的合成、G12D抑制剂的合成降低了制备门槛。
54 AZ191中间体、制备方法以及一种AZ191的制备方法
反应路线如下:其中,X选自卤素,包括如下步骤:A1)将化合物1、Ν,Ν‑二甲基甲酯胺二甲缩醛和第一溶剂混合,进行第一反应,得化合物2。A2)将步骤A1)所得的化合物2、脲素和关环试剂进行第二反应,得化合物3。A3)将步骤A2)所得的化合物3与卤化试剂进行第三反应,得到化合物4。A4)将步骤A3)所得的化合物4、化合物7、酸和第二溶剂进行第四反应,得到化合物。制备方法因为以1‑(1H‑吡咯并[2,3‑c]吡啶‑3‑基)乙酮为反应底物,先后进行缩合、关环、卤代、胺化反应,所以整条路线可以以较高的收率得到AZ191,利于工业化生产。
55 一种曲前列环素及其中间体的制备方法
中间体3‑烷氧基‑2‑烯丙基苯甲醛以为原料,经烯丙基化反应,或自由基烯丙基化反应,或过渡金属催化的偶联反应,再经水解得到。本发明所述制备方法,缩短了合成路线,反应条件温和,操作简便,原料便宜易得,减少了废料的生成,最终产品收率显著提高,适合工业化生产。
56 一种无溶剂合成阿罗洛尔中间体的方法
在一定温度下在乙酸酐中,2‑(α‑甲氧基亚胺基)乙基噻吩(式I)进行傅克反应,即可制备2‑乙酰‑5‑(α‑甲氧基亚胺基)乙基噻吩(式II)。本发明采用无溶剂直接反应方法,产率达到85%以上。后处理操作简便,与目前工业生产的常用方案相比,减少了三废的产生,更加绿色环保,同时还降低了生产成本,更适用于现代化工业化生产。
57 4'-O-甲基补骨脂查尔酮类似物及其制备方法、制备中间体和应用
该4'‑O‑甲基补骨脂查尔酮类似物选自:该4'‑O‑甲基补骨脂查尔酮以及其类似物具有较强的抗肿瘤活性,可以对肿瘤细胞进行有效杀伤。
58 一种沙库巴曲中间体的制备方法
以(2R)‑4‑硝基2‑甲基‑丁酸乙酯和4‑溴甲基联苯为初始原料,经缩合反应、加氢还原反应、酸化、与BOC酸酐进行氨基保护反应、水解、与R(+)‑α‑甲基苄胺进行成盐拆分反应和酸化游离处理,即可制备得到沙库巴曲中间体。本发明提供的制备方法工艺简单,操作简单,目标产物收率高(实施例1总收率为36.5%),纯度高,原料成本低,生产成本低,产生的三废少,适宜工业化生产。
59 一种非奈利酮及其制备方法以及非奈利酮中间体
提供的制备方法利用双酯结构的式2所示结构的化合物作为反应原料进行一系列反应,配合使用手性催化剂反应得到S/R构型最高比例为85:15的产物,用酒石酸衍生物将该产物拆分制备得到式7所述结构的化合物,然后经水解、酰胺化反应得到非奈利酮。通过本发明的制备方法可得到ee值>99.9%,纯度可达99.9%的非奈利酮原料药。而且,制备方法的反应过程全部为普通反应,不涉及氢解、高压等危险反应步骤,反应条件温和,无剧毒副产物产生,对反应装置要求低,运行成本低,操作简便,适于工业化生产,有较好的市场前景。
60 一种瑞博西尼关键中间体的制备方法
采用5‑溴‑2‑氯‑N‑环戊胺嘧啶‑4胺为起始原料,经Sonogashira反应及环合转变为2‑氯‑7‑环戊基‑7H‑吡咯并[2,3‑D]嘧啶‑6‑甲醇,再经次氯酸钠、亚氯酸钠氧化为2‑氯‑7‑环戊基‑7H‑吡咯并[2,3‑D]嘧啶‑6‑甲酸,2‑氯‑7‑环戊基‑7H‑吡咯并[2,3‑D]嘧啶‑6‑甲酸与氯甲酸异丁酯制备混合酸酐,再与二甲胺盐酸盐反应得到瑞博西尼关键中间体。该方法所用原料便宜易得,操作简单,安全环保,最终产品纯度高、收率高,适合工业化生产。
61 一种瑞司美替罗中间体的制备方法
以化合物3为起始原料,先与化合物23反应得到化合物22,接着和化合物2反应得到化合物21,化合物21经脱保护得到瑞司美替罗关键中间体化合物4。该方法反应条件温和,选择性好,操作简单,收率高,纯度高,便于工业化生产。
62 一种高光学纯度芦可替尼中间体的制备方法
新的改进的制备式(Ⅰ)的(R)‑3‑(4‑(7H‑吡咯并[2,3‑d]嘧啶‑4‑基)‑1H‑吡唑‑1‑基)‑3‑环戊基丙腈的方法,使用通式(Ⅱa)的手性取代的酒石酸酯通过外消旋体拆分来制备,其中Ar代表取代或未取代的芳族或杂芳族基团。
63 一种大麻二酚的合成方法、中间体及其制备方法
以将原料I在酸催化下与(1S,4R)‑1‑甲基‑4‑(1‑甲基乙烯基)‑2‑环己烯‑1‑醇反应得到中间体II;将中间体II通过Suzuki偶联或与格式试剂偶联反应,得到中间体III。最后,中间体III在酸性条件下脱烷基得到最终产物大麻二酚。反应体系简单,反应条件易控制,易于放大生产;本发明方法制备的大麻二酚中间体通过常规方法即可重结晶纯化,收率均在80%以上。三步反应制得的大麻二酚总收率达70%以上,纯度达99.1%,完全满足原药料指标,为大麻二酚的工业化生产提供了新的方法与思路。
64 一种米洛巴林中间体(2E)-4-乙基庚-2,6-二烯酸的制备方法
以化合物SM‑1即(E)‑2‑己烯酸酯类化合物为原料与烯丙基溴进行反应,经后处理得目标化合物。本发明的反应条件温和,操作过程简便,解决现有技术中需要高温或者长时间反应以及制备亚胺鎓盐等复杂操作问题,产品具有较高的纯度、收率。
65 一种瑞舒地尔关键中间体的合成方法
采用异喹啉作为起始原料,依次经氧化反应、取代反应、氟化反应、氯化反应、脱卤反应得到4‑氟异喹啉,该合成方法具有原料易得、控制条件参数明确、工艺重复性好、产物总收率高的特点,解决了现有4‑氟异喹啉合成方法所存在的成本高、操作复杂、收率低等问题。
66 连续化左磷右胺盐中间体制备方法和系统
包括:将甲苯与三氯化磷的混合液和甲苯与丙炔醇的混合液分别连续泵送至第一预热器和第二预热器预热;预热后的两种混合液进入第一管道反应器中反应;反应后物料经气液分离后进入第二管道反应器中反应;反应后的物料进入减压蒸馏塔中减压浓缩,塔釜排出左磷右铵盐中间体。本发明采用管道反应器进行酯化反应和重排反应生产,实现了左磷右铵盐中间体由间歇性工艺到连续化反应的转变,提高了生产效率,反应过程中热量可控,提升了安全性,采用本发明制备左磷右胺盐中间体,可提高收率,可提高左磷右胺盐中间体纯度。
67 一种布瑞哌唑中间体的合成方法
是以4‑溴代苯并[b]噻吩和无水哌嗪为起始原料,将醋酸钯、BINAP、碱和甲苯混合,在氮气保护下,加热反应2‑4小时,降温加水淬灭,加入硅胶除钯,后处理无需置换溶剂,直接从甲苯/异丙醇中结晶得到4‑哌嗪苯并[b]噻吩盐酸盐,可以降低催化剂和溶剂的使用量,简化了后续处理工艺过程,并有效的提高了布瑞哌唑中间体的产率,降低了生产成本。
68 一种爱普列特中间体及其制备方法
以3‑氧代‑4‑雄甾烯‑17β‑羧酸为起始原料,与溴化试剂和叔丁胺反应,制得爱普列特中间体(3‑溴‑N‑(1,1‑二甲基乙基)雄甾‑3,5‑二烯‑17β‑甲酰胺)。本发明的合成方法,操作简便,路线短,反应条件温和,成本低,产率高,适合工业化大生产,对爱普列特原料药的生产有着重大意义。
69 一种头孢噻吩钠中间体2-噻吩乙酰氯的合成方法
合成路线如下所示:具体步骤如下:(1)2‑噻吩乙酸的合成:将2‑噻吩乙醇溶于Solvent1中,依次加入九水硝酸铁、Salt、Cat.1,室温条件下,持续通入Cat.2反应,制得2‑噻吩乙酸;(2)2‑噻吩乙酰氯的合成:将2‑噻吩乙酸溶于Solvent2中,滴加氯化亚砜,进行反应,旋除溶剂,蒸馏得到2‑噻吩乙酰氯。本发明在2‑噻吩乙酸的合成中使用了空气来代替其他氧化剂,减少了固废,反应温度温和,提高了产品质量和收率;在合成2‑噻吩乙酰氯的过程中,前后溶剂使用相同,避免溶剂残留影响,操作简便,反应中不需要添加任何催化剂,反应过程平稳,工艺简单,易于工业化生产。
70 一种微管亲和力调节激酶抑制剂中间体的制备方法
微管亲和力调节激酶抑制剂中间体为(1S,6R)‑2,2‑二氟‑6‑(((R)‑1‑苯基乙基)氨基)环己烷‑1‑醇,本发明以L‑樟脑磺酸作为拆分剂制备(1S,6R)‑2,2‑二氟‑6‑(((R)‑1‑苯基乙基)氨基)环己烷‑1‑醇。本发明对2,2‑二氟‑6‑(((R)‑1‑苯基乙基)氨基)环己烷‑1‑醇外消旋体进行纯化制备(1S,6R)‑2,2‑二氟‑6‑(((R)‑1‑苯基乙基)氨基)环己烷‑1‑醇时,操作简单,通过成盐即可实现拆分,经过滤、解离即可得到产品,得到的产品摩尔收率高,产品损失少,且产品质量好,手性纯度高达99%,本发明方法更适宜工业化生产。
高密度高强度石墨国内外研发现状
美国POCO Graphite Inc 利用超细粉石墨材料在2500℃以上,压力作用下的蠕变特性,成功开发再结晶石墨。再结晶石墨是在高温高压下使多晶石墨晶粒长大并走向排列而得到的高密度材料,石墨体内的缺陷(砂眼、裂纹等)消失,体积密度可达到1. 85-2.15g/cm3。
日本住友金属公司用MCMB 成功研制体积密度1.98-2.00g/cm3高密度各向同性石墨。日本无机材料研究所在沥青的苯不溶物添加蒽油和1, 2一苯并菲等高沸点有机化合物,加热至350-600℃,制成粒径>1-100 的MCVIB 在4MPa的成型压力下成型,石墨化后得到高密度各向同性石墨。
揭斐川电气公司用B阶缩合稠芳多核芳烃(COPNA)树脂为原料,在200 ℃模压成型,固化后,再在400-500℃的条件下和非氧化性气氛中热压处理,经过后续工作得到高石墨化、导热性和导电性俱佳的高强高密(1. 85g/cm3) 石墨材料。
与发达国家相比还有很大差距
然而,尽管天然石墨是中国的优势矿物资源,储量、产量、国际贸易量均居世界前位,但中国的石墨产业布局严重畸形的局面却亟待改变。民进中央长期调研发现,长期以来国内石墨产业矿产资源资料落后,生产品级划分不严,浪费严重,基本上处于采选和初加工阶段,技术严重落后,产品绝大部分为普通中高炭矿产品。值得注意的是,日、美等发达国家将天然石墨作为战略资源,却利用中国的廉价原料,深加工成能够在电子、能源、环保、国防等领域应用的先进石墨材料,以极高的价格占领国际市场并返销中国。
我国石墨主要出口国家分别是美国、日本、韩国、德国等,每年出口量占世界各国总出口量的80%以上。日本是全球最大的石墨进口国,其中98%从我国进口,美国天然鳞片石墨完全依靠进口,其中48%来自我国。我国石墨初级产品的出口国又恰恰是我国高附加值石墨产品的进口国。在我国大量出口石墨初级产品的同时,美、日、韩等发达国家却早早把石墨列为战略资源,严格控制开采,以采代购。
高纯石墨 发展高附加值石墨制品的关键
中国生产的天然石墨产品中,绝大部分是最初级的加工产品。这些初级加工产品,都面临着产能过剩的问题,而产能过剩又压制了价格。伴随初级产品出口为主,中国石墨的高附加值产品研发和生产则明显缺失,随着科学技术的不断进步,高纯微细石墨的用途越来越广。普通的高碳石墨产品已不能满足原子能,核工业的飞速发展急需大量的高纯石墨。
据2011年不完全统计,中国高纯石墨年需求量约为20万吨左右。国外以其技术优势在高纯石墨方面占据领先地位,并在石墨高技术产品方面对中国进行禁运。目前中国高纯石墨技术只能勉强达到纯度99.95%,而99.99%乃至以上的纯度只能全部依赖进口。2011年,中国天然石墨产量达到约80万吨,均价约为4000元/吨,产值约为32亿元。目前,进口99.99%以上高纯石墨的价格超过20万元/吨。其进出口由于技术壁垒导致的价差非常惊人。
加强技术研发,提高产品质量
高密度高强度石墨较传统石墨除了具有高密度,高强度的强度外,还具有良好的热稳定性。良好的热稳定性是使石墨高温使用中抗氧化性能大幅度提高,特别在模具行业,比传统石墨可延长20-50% 的寿命。
对于中国石墨行业而言,技术进步是其发展的重心和关键。许多国家,尤其是一些发达国家,不断致力于提高技术水平来开发石墨新产品和新用途,甚至由于多年积累,已经形成寡头垄断的态势。例如氟化石墨主要由美、日、俄生产;膨胀石墨主要由美、日、德、法等国垄断;其中高纯膨胀石墨只有日本生产。
近几年,我国涌现出许多石墨新技术和优秀科技成果,高纯石墨材料开发与应用取得了可喜的进步。只有不断依靠技术创新提高企业核心竞争力作为生存发展之道,不断培育技术人才,加大科技投入,提高科技转化、创新能力,才是石墨企业发展的根本。 为帮助国内石墨生产企业提高产品质量,发展高端产品,我们特收集整理精选了本专集资料。
石墨提纯 现有工艺存在缺陷
随着技术的不断发展,通过选矿工艺得到的鳞片状高碳石墨产品己不能满足某些高新行业的要求,因此需要进一步提高石墨的纯度。目前,国内外提纯石墨的方法主要有浮选法、酸碱法、氢氟酸法、氯化焙烧法、高温法等。其中,酸碱法、氢氟酸法与氯化焙烧法属于化学提纯法,高温提纯法属于物理提纯法。
1、 浮选法:是利用石墨的可浮性对石墨进行富集提纯,适应于可浮性好的天然鳞片状石墨,石墨原矿经浮选后最终精矿品位通常为90%左右,有时可达94%~95% 。使用此法提纯石墨只能使石墨的品位得到有限的提高,是因为部分硅酸盐矿物和钾、钠、钙、镁、铝等化合物里极细粒状浸染在石墨鳞片中,即使细磨也不能完全单体解离,所以采用选矿方法难以彻底除去这部分杂质。
2、 酸碱法:是当今我国高纯石墨厂家中应用最广泛的方法,其原理是将NaOH与石墨按照一定的比例混合均匀进行锻烧,在500-700℃氯化焙烧法的高温下石墨中的杂质如硅酸盐、硅铝酸盐、石英等成分与氢氧化钠发生化学反应,生成可溶性的硅酸钠或酸溶性的硅铝酸钠,然后用水洗将其除去以达到脱硅的目的;另一部分杂质如金属的氧化物等,经过碱熔后仍保留在石墨中,将脱硅后的产物用酸浸出,使其中的金属氧化物转化为可溶性的金属盐,而石墨中的碳酸盐等杂质以及碱浸过程中形成的酸溶性化合物与酸反应后进入液相,再通过过滤、洗涤实现与石墨的分离,从而达到提纯的目的。但是此种提纯方法的缺点在于需要高温锻烧,设备腐蚀严重,石墨流失量大以及废水污染严重,且难以生产碳含量99.9%及以上的高纯石墨。
3、 氢氟酸提纯法:是利用氢氟酸能与石墨中几乎所有的杂质反应生成溶于水的化合物及挥发物,然后用水冲洗除去杂质化合物,从而达到提纯的目的。使用氢氟酸法提纯石墨,除杂效率高、能耗低,提纯所得的石墨品位高、对石墨的性能影响小。但由于氢氟酸有剧毒和强腐蚀性,生产过程中必须有严格的安全防护措施,对于设备要求严格导致成本升高;另外氢氟酸法产生的废水毒性和腐蚀性都很强,需要严格处理后才能排放,环保环节的投入又使氢氟酸法的成本大大增加,如污水处理稍不到位,会对环境造成巨大污染。
4、氯化焙烧法是将石墨矿石在一定高温和特定的气氛下焙烧,再通入氯气进行化学反应,使石墨中的杂质进行氧化反应,生成熔沸点较低的气相或凝聚物的氯化物及络合物逸出,从而达到提纯的目的。由于氯气的毒性、严重腐蚀性和污染环境等因素,在一定程度上限制了氯化焙烧工艺的推广应用。
5、高温法提纯石墨,是因为石墨是自然界中熔点、沸点最高的物质之一,熔点为3850 士50℃,沸点为4500℃,远高于所含杂质的熔沸点,它的这一特性正是高温法提纯石墨的理论基础。将石墨粉直接装入石墨士甘锅,在通入惰性保护气体和少量氟利昂气体的纯化炉中加热到2300~3000℃,保持一段时间,石墨中的杂质因气化而溢出,从而实现石墨的提纯。虽然高温法能够生产99.99%以上的超高纯石墨,但因锻烧温度极高,须专门设计建造高温炉,设备昂贵、投资巨大,对电力口热技术要求严格,需隔绝空气,否则石墨在热空气中升温到450℃时就开始被氧化,温度越高,石墨的损失就越大。这种设备的热效率不高,电耗极大,电费高昂也使这种方法的应用范围极为有限,只有对石墨质量要求非常高的特殊行业(如国防、航天等)才采用高温法小批量生产高纯石墨。
(二) 低能耗石墨提纯技术 国内最新研制
据恒志信网消息:针对石墨提纯现有技术存在的问题。武汉工程大学研制成功一种对天然石墨进行高纯度提纯的方法及装置。该方法能耗低,所得到的石墨的纯度高,其装置简单。
与现有技术相比,新工艺的有益效果是:
1、工艺新颖、装置简单、能耗低、升温迅速,是采用等离子体炬加热技术,利用热等离子体局部超过4000℃的高温,使石墨原料中的杂质在短时间内充分气化,实现提纯石墨目的,可以实现石墨的连续提纯。
2、原理与现行高温提纯法一致,但由于是将石墨粉直接送入具有极高温度的等离子体焰流中直接加热,因此热利用率极高。而采用现有高温炉提纯,热能除了加热物料外更多的是在加热炉体,并被散发到环境中。
3、采用新技术工艺,石墨的纯度高(碳质量含量≥98.7%)。初始碳质量含量90% 、粒度100目的石墨,经过一次提纯后碳质量含量98.7% ;经过第二次提纯碳质量含量99.5% 经过第三次提纯碳质量含量99.9%;如再经过几次循环石墨提纯到碳质量含量99.99%。
资料中详细描述石墨提纯的方法及其装置,其能耗远低于现行高温提纯法。石墨的纯度高,装置简单。
(三)天然隐晶质石墨(矿)剥离提纯方法
天然隐晶质石墨是我国的优势矿产资源之一,主要用于铸造、石墨电极、电池碳棒、耐火材料、铅笔和增碳剂等方面。隐晶质石墨晶体极小,石墨颗粒嵌于粘土中,很难分离。由于隐晶质石墨原矿品位高(一般含碳60%-80%),部分可达95%,平均粒径。.01-0.1μm,用肉眼很难辨别,故称隐晶质石墨,俗称土状石墨。与鳞片石墨相比,土状石墨碳含量高,灰分多,晶粒小,提纯技术难度大,使其应用范围受到极大限制。在我国,通常都是将开采出来的石墨矿石经过简单子选后,直接粉碎成产品出售。因此天然隐晶质石墨资源得不到充分的利用,甚至盲目出口,造成资源的浪费。鉴于天然隐晶质石墨的技术含量和附加值极低,而我国市场需要的高纯超细石墨则多数依赖进口,开展天然隐晶质石墨的提纯新方法尤为紧迫。
据恒志信网消息:湖南大学最新研制成功天然隐晶质石墨的提纯新方法,解决了现有技术中天然石墨矿,特别是隐晶质石墨提纯技术难度大、成本高、污染大、资源浪费严重的问题,适用于不同品味、不同矿质的天然石墨的提纯,且成本低,环境污染小,低能耗,简单易行,具有广泛的应用前景。
天然隐晶质石墨的提纯新方法具有如下优点:
1、新技术所采用的插层剂原料价格低,可循环使用或回收利用。
2、新技术对石墨结构无明显破坏,也不会产生明显缺陷,对大尺寸鳞片石墨具有保护作用。
3、新技术所生产的产品多元化(高碳石墨、高纯石墨、石墨烯和石墨烯纳米片) ,可根据市场需求调整产品结构。
4、新技术可在现有石墨浮边生产线上增添一定工艺设备进行实施,工艺简单,设备要求低,条件温和,成本低。
5、新技术不使用酸和碱,污染物产生少,对环境友好。
6、新技术适用于不同的固定碳含量的天然石墨矿,也可用于与辉钼矿的剥离提纯。
技术指标:原料:高碳隐晶质石墨粉(固定碳含量为43.2% 200目)
成品:高纯石墨(碳含量99.95% ),石墨回收率72% 。
【资料描述】
资料中详细描述了天然隐晶质石墨的提纯新方法、矿浆液调制方法、超声剥离的矿浆液、浮选、提纯等等步骤、以及生产实施例等等。
纯度≥99.999% 天然石墨高温提纯新技术
【石墨高温提纯技术背景】
石墨作为工业原料,尤其在一些特殊行业以及原子能工业、汽车工业、航天技术、生物技术等高新技术工业,不但对石墨的碳含量要求极高,同时也要求在石墨的成分中不能含有过多的微量元素,必须是99.9%以上的高纯度石墨,然而现在一般的天然石墨含碳量均无法满足这些行业对高纯度石墨的要求,目前对天然石墨采取的提纯法仍是利用石墨的耐高温的性能,从而使用高温电热法提高石墨纯度,由于此工艺复杂,需要建设大型电炉,电力资源浪费严重,同时需要不断通入惰性气体,造成成本高昂。尤其重要一点,是当石墨纯度达到99.93%时,己达到极限,无法使石墨的固定碳含量继续提高。目前对于氯气提纯尚未形成工业化生产。
现有技术存在工艺复杂、对原料的颗粒选择过大等缺点。国内外有采用高温提纯天然鳞片石墨,即将天然石墨装入己石墨化过的石墨士甘塌内进行石墨化提纯,利用石墨士甘锅具有良好的导电、导热以及耐高温特性,石墨灰粉2700℃度以上高温气化逸出,该方法能将纯度提高至99.99% 以上,但高温石墨纯化存在纯化时间长、工艺流程复杂、要求较高的温度同时严重浪费电力资源,然而化学提纯石墨的方法由于工艺落后,对于小颗粒的石墨不能较好的回收,对环境造成污染,并且纯度亦不能满足市场对产品的需求。
【高纯度天然石墨的提纯新方法 研制成功】
据恒志信网消息:针对上述现有技术存在的问题中。国内新研制成功一种纯度高、工艺简单、节省电力资源、利于石墨回收的高纯度天然石墨的提纯方法。是采用高温提纯石墨的方法,经过高温反应、化学提纯、洗涤、脱水后获得高纯度的石墨,利用氧化剂、络合剂与天然石墨进行反应,去除原料中杂质,得到微量元素含量低,性能稳定的石墨。新工艺对含碳量>60%的石墨原料进行纯化,得到纯度大于99.9991%,灰粉<1PPM,微量元素<0.5PPM的石墨,具有工艺简单,易于操作,生产效率高,耗电量低,不需要大型的加工设备,节约生产成本。
【新技术优点】
在石墨提纯工艺中均采用化学提纯或氧化提纯工艺,对于6000目以上的天然石墨则提纯的纯度很难达到99.9以上。
1、新提纯工艺利用氧化剂和络合剂与天然石墨原料进行化学反应,去除原料中Si02 、A1203 、MgO 、CaO 、P205、CuO 等杂质,从而生产出微量元素含量低,性能稳定的产品。而现有国内石墨提纯工艺中均采用化学提纯或氧化提纯工艺,对于6000目以上的天然石墨则提纯的纯度很难达到99.9以上。
2、目前国内大多在提纯过程中采用自来水用于石墨的提纯工艺中,由于一般的水质中均含有Ca2+、Mg2+、CL-、Si2+等离子物质,不利于去除石墨中本身所含有的Si02 、A1203 、MgO 、CaO 、P205 、CuO等杂质,新技术方案的工艺中采用经过离子交换树脂处理过的不含Ca2+、Mg2+、CL-、Si2+等杂质离子的纯水,更好的去除石墨中所含有的Ca2+、Mg2+、CL-、Si2+ 等杂质离子,同时可以使石墨中的pH 值达到6.4-6.9 。从而得到纯度高达99.999% 以上,灰粉<1PPM,微量元素<0.5PPM的石墨。
3、新技术方案工艺中将反应釜内的温度加热至85-90℃,可以是石墨与所加入的氢氟酸、盐酸、硝酸和乙二胺四乙酸与石墨中的所含的Ca2+、Mg2+、CL-、Si2+等杂质离子能够进行充分的化学反应,通过洗涤、脱水后,去除石墨中含有的Si02 、A1203 、MgO 、CaO 、P205、CuO等杂质,新技术方案中所选用的温度范围,并按照所述的温度范围进行提纯,能够使提纯达到最佳效果。络合剂具有分散、悬浮作用和很强的络合能力,在较小用量甚至极小用量就能达到需要的络合程度,络合剂还能有Ca2+、Mg2+等金属离子发生络合,形成金属络合物,从而达到去除金属离子的目的。
4、新技术方案工艺中加入的络合剂能是络合剂与石墨中的Ca2+、Mg2+等离子发生络合,形成金属络合物,通过洗涤、脱水去除石墨中含有的Si02 、A1203 、MgO 、CaO 、P205、CuO等杂质,技术方案选用合适的络合剂,并按照所述的比例加入进行提纯够进一步提高纯化的效果.
5、新技术工艺可对粒度为100-10000目,含碳量>60% 的石墨原料进行纯化,得到纯度为99.999% 的石墨成品,具有工艺简单,易于操作,反应时间短,生产效率高,耗电量低,在提纯过程中不需要大型的加工设备,节约生产成本。所得产品可应用于电子工业、国防尖端工业、化学分析工业、核工业、航天工业等高科技领域。
【高纯度天然石墨的提纯方法】部分摘要
提纯步骤为:
步骤一、取含碳量>60% 的石墨400公斤,放入反应釜Ⅰ内,按石墨的重量百分比依次加入30公斤乙二胺四乙酸、50公斤氢氟酸(浓度40%)、2公斤硝酸(浓度98%)。盐酸(浓度30%),后加入100L水,开机搅拌,转速200转/分钟,搅拌时间20分钟;
步骤二、升温反应,开启反应釜上温控装置,使反应釜内的温度升至85℃,反应4小时,反应过程中每隔50分钟搅拌一次,每次搅拌时间3分钟,搅拌速度200转/分钟,反应完成后,再静置3小时,静置完成后排出反应釜内尾气,制得混合料浆A;
步骤三、将混合料浆A 置入冷却塔Ⅱ内,向冷却塔Ⅱ内注入重量为混合料浆A两倍量的纯水,形成混合料浆A-2,边注水边搅拌,搅拌速度200转/分钟,搅拌至冷却塔II内的温度降至35℃止,完成降温后,打开冷却塔II 的放料阀,将混合料浆A-2 置入洗涤器Ⅲ内;
步骤四、将混合料浆A-2置入洗涤器Ⅲ中后,向洗涤器Ⅲ中注入纯水,边注水边洗涤,洗涤器Ⅲ的洗涤转速500转/分钟,洗涤至混合料浆A-2 的pH值呈6.4止,后将洗涤器III的转速设置为1000转/分钟,进行离心脱水,脱水至混合料浆A-2的含水量为20%止,停止脱水,制得混合料浆B;
步骤五、混合料浆B 重新放入反应釜Ⅰ内,按石墨重量百分比加入80公斤硫酸(浓度98%)、40公斤氢氟酸(浓度40%),然后加入纯水100L,搅拌20分钟,搅拌速度为200转/分钟;
步骤六、第二次升温反应,开启反应釜Ⅰ的温控装置,使反应釜Ⅰ内的温度升至85℃,反应2小时,反应过程中每隔1小时进行一次搅拌,每次搅拌时间3分钟,每次搅拌速度为200转/分钟,反应结束后,关闭电源,打开反应釜I 上的尾气排放阀,将反应釜I内的废气排出,制得混合料浆C;
步骤七、 步骤八、步骤九、步骤十、步骤十一、步骤十二
...............略 详细步骤请见本资料专集
步骤十三、将脱水后的混合料浆H 送至烘干设备上烘干,烘干温度为150-350 ℃,烘干后的含水量<0.1% ,碳含量为99.9991% -99.9995%,制得产品;
【资料描述】
资料中详细描述了高纯度天然石墨的提纯技术的制备方法、现有技术所存在的问题,性能和优点、实施例等等。
北京恒志信科技发展有限公司
我们的优势
国际新技术资料网拥有一支工作态度认真、业务基础扎实、团结协作意识强、专业技术水平过硬的员工队伍。我们以质量、信誉、完善的售后服务为准则,以优质的服务、雄厚的技术力量、先进的情报手段服务于广大客户。公司和自2000年成立以来,与有关科研单位、报社、信息中心共同合作为近万家企业单位、科研院校提供了有效的专题资料服务,得到了广大的企业家、科研工作者的好评。
国际新技术资料网由北京恒志信科技发展有限责任公司组建,是专门致力于企业经济信息、科技信息开发、加工整理、市场调查和信息传播的专业化网站,网站发展宗旨是:致力于我国信息产业的建设,及时向企业、科研部门提供最新的国际最领先技术的科技信息情报,有效服务于企业新产品开发、可行性论证和推广。
我们的业务
网站主要提供包括美国、日本、韩国、欧洲各国的专利技术资料、世界排名企业最新技术情报资料收集整理、数据加工、资料翻译,接受企业、科研院所委托专题情报服务。网站主要栏目包括世界科技发展热点的各类先进的新材料、石油助剂、化工助剂、建筑涂料,粘合剂 肥料配方,金刚石砂轮,金刚石锯片,磁材,金属表面处理,水处理及水处理剂等新技术工艺配方。国际新技术资料网 电话:13141225688
Copyright © 2010-2030恒志信网 京ICP备20014911号