高性能膨胀石墨、可膨胀石墨制备技术工艺配方资料精选
全国订购热线:13141225688 在线订购!
2024新版《高性能膨胀石墨、可膨胀石墨制造工艺配方精选汇编》
【资料页数】 715页 (大16开 A4纸)
【项目数量】 65项
【资料内容】 制造工艺及配方
【交付方式】 上海中通(免邮费) 顺丰(邮费自理)
【图书资料】 1680元(上、下册)
【电 子 版】 1480元(PDF文档,可电脑)
【订购电话】 13141225688 13641360810
【联 系 人】 梅 兰 (女士)
近年来,随着烧结钕铁硼磁性材料新技术的迅速发展,我国钕铁硼磁性材料表面处理技术取得了可喜的成绩,许多优秀的技术达到或超过国际发达国家的水平。例如:中科院最新研制的国际领先配方:可大幅度提高钕铁硼涂层发黑液和有机涂层配方,新配方表面生成氧化膜,耐中性盐雾腐蚀可达600h,无电镀化学镀污染。中科三环高新技术:国际领先水平的钕铁硼磁体表面电镀黑镍配方和工艺方法,良好黑色外观,用于外观件,传统电镀设备即可,滚镀挂镀,镀液长期使用。
本篇专辑精选收录了国内外关于钕铁硼永磁材料表面处理最新技术工艺配方技术资料。涉及国内外著名公司、科研单位、知名企业的最新专利技术全文资料,工艺配方详尽,技术含量高、环保性强是从事高性能、高质量、产品加工研究生产单位提高产品质量、开发新产品的重要情报资料。
1 一种钕铁硼塑磁材料用复合抗氧剂及其制备方法和应用
复合抗氧剂在结合各原料成分的优势的同时,有效地发挥了两种抗氧剂间的协同作用,使复合抗氧剂在用于钕铁硼塑磁材料时,使塑磁材料具有良好的抗氧化效果、高温稳定性和相容性,具有良好的应用前景。
2 一种提升高牌号烧结钕铁硼磁体表面镀层结合力的方法
采用钕铁硼原料制备烧结钕铁硼半成品,然后采用晶界渗透方式对烧结钕铁硼半成品毛坯进行渗透处理,再加工制成烧结钕铁硼半成品黑片,对烧结钕铁硼半成品黑片进行电镀处理,通过取消酸洗后活化工序,而且通过二次电镀用硫酸锌电镀槽镀锌的方式代替氯化锌电镀槽镀锌的方式来降低磁体被氧化腐蚀的风险,从而提高了高牌号烧结钕铁硼磁体结构强度,并改善了高牌号烧结钕铁硼磁体表面镀层结合力,有效解决高牌号烧结钕铁硼磁体表面镀层结合力差的技术难题。
3 提高烧结钕铁硼磁体组织均匀性以及磁性能的方法
通过对熔炼、甩带、氢破、气流磨工艺制备的宽粒度分布的初始钕铁硼磁粉进行筛分,得到窄粒度分布的粗粉和细粉,然后采用原有工艺对粗粉进行处理,得到与原磁体晶粒尺寸相近,但晶粒大小更均匀的粗粉磁体;而采用比原有工艺烧结和热处理温度稍低的条件对细粉进行处理,得到晶粒大小均匀且粒径显著小于原磁体的细粉磁体。
4 一提高钕铁硼表面滚镀镍磷合金镀层界面结合力的前处理工序
提高钕铁硼表面滚镀镍磷合金镀层界面结合力的前处理工序。所述前处理工序依次包括:抛丸处理、HEDP碱性溶液浸泡处理、镀铜处理、柠檬酸钠碱性溶液浸泡处理和镍磷合金滚镀处理。所述的前处理工序,通过在两次滚镀之前将镀件在含有高浓度络合物质的溶液中进行浸泡,使其在滚镀的最初阶段表面还未完全被镀层保护的时存在一个络合物保护层,减少镀液对基体的腐蚀,提高镀层界面结合力。同时,在预镀铜溶液中加入铜粉,制备含有铜粉的复合预镀层,使预镀铜层在较薄的厚度下就能获得较高的致密度,从而在后续的电镀镍磷合金过程中保护基体,同样能提升镀层的界面结合力。
5 一种烧结钕铁硼永磁体的防腐蚀处理方法
通过在烧结钕铁硼永磁体的基体表面依次形成环氧膜层、钯活化层和镍磷层,能够改善永磁体在电机使用中产生的磁涡流现象对永磁体的损耗,提高永磁体的防腐蚀和耐磨性能,且不存在磁闭路、磁屏蔽效应,有效延长永磁体的使用寿命,此外,工艺操作简单,制备工艺成本低廉,适合批量化生产。
6 用于电镀烧结钕铁硼永磁体的镍铁合金电镀溶液及其应用
对镍铁合金电镀溶液的组成成分的调整以及QDP‑001镍铁合金络合剂和QDP‑002镍铁合金还原剂的使用,使电镀镍铁合金工艺变得操作简单、易于保养和维护,在确保镀层品质优异的前提条件下节省了大量成本。
7 烧结钕铁硼永磁体的防腐蚀处理方法
通过在烧结钕铁硼永磁体的基体表面依次形成环氧膜层、导电树脂膜层和镍层,能够改善电机使用中产生的磁涡流现象对永磁体的损耗,同时导电树脂膜层的存在能够解决环氧膜层电阻较大、不利于金属上镀的问题,实现在环氧膜层表面进行电镀镍工艺,进而提高永磁体的防腐蚀和耐磨性能,且该永磁体不存在磁闭路、磁屏蔽效应,有效延长永磁体的使用寿命。
8 用于电镀烧结钕铁硼永磁体的镍钴钨合金电沉积溶液及其应用
电沉积液在磁体表面电镀后,可以形成稳定性良好、镀层连续均匀且结晶致密、色泽光亮均一以及无残余应力的平整的镍钴钨合金镀层,大大提高了钕铁硼永磁体的使用寿命,钕铁硼永磁体基体与镍钴钨合金镀层间具有极高的结合力,镍钴钨合金镀层内应力较低,耐蚀性极高且可抗高温氧化,硬度很高具有很强的耐磨性。
9 晶界扩散制备高矫顽力烧结钕铁硼磁体及其方法
采用Cu、Ga的搭配比例(1:1~2:1)组合在扩散回火热处理430℃~540℃的温度下能形成一种R‑Cu‑Ga相,可达到提升矫顽力且剩磁降低较少的效果,同时具有优异的扩散性,而且减少重稀土的使用量,扩散深度提升效果明显、工艺简单,所用设备为常规设备,可实现批量化生产和推广。
10 一种钕铁硼磁体表面涂镀层的退镀液和退镀方法及其应用
包括:溶剂,选自水和与水互溶的有机溶剂;溶质,所述溶质包括如下组分:碱10~30g/L,络合剂2~6g/L,缓蚀剂1~10g/L。通过振动退镀,加入少量上述退镀液后,在常温低碱性浓度的状态下即可完成工件表面的退镀。退镀液和退镀方法适用范围广,退镀效果好且高效,低浓度常温退镀对磁体、操作人员和环境影响较小。
11 钕铁硼钝化溶液及其制备和应用方法
解决了现有技术中钕铁硼材料耐腐蚀性能差、含磷表面防护涂层对环境不友好的问题之一。钝化溶液的组分按浓度计为,硝酸镧3~10g/L,柠檬酸钠3~10g/L,钼酸钠1~6g/L,四硼酸钠0.2~1g/L,双氧水1~5ml/L,溶剂为去离子水。使用的钝化溶液按照配套的方法对钕铁硼材料进行处理后,材料耐腐蚀性显著提高,且不会对环境产生污染和破坏。
12 高压扭转制备高矫顽力晶界扩散钕铁硼磁体的方法
步骤1:将钕铁硼粉末和重稀土粉末混合,然后进行研磨以达到混合均匀,得到复合粉末;步骤2:将步骤1得到的复合粉末预先压制成块状磁体;步骤3:将块状磁体置于高压扭转设备,使其发生形核、拉长变形并细化,得到片状磁体;步骤4:将获得的片状磁体在真空条件下进行扩散热处理以发生原位晶界扩散,获得高矫顽力钕铁硼磁体获得高矫顽力钕铁硼磁体。优点是磁体经高压扭转后可以进一步细化晶粒尺寸,同时调控晶界相状态;该方法可以从本质上改变扩散磁体深度的局限性,使扩散磁体的矫顽力提高2‑3倍左右。
13 用于钕铁硼磁铁表面的强化工艺方法
该方法包括将钕铁硼磁铁经由表面强化处理单元对将钕铁硼磁铁表面进行强化,表面强化处理单元包括注射包覆处理系统或碳氮共渗处理系统,通过在磁铁表面一次注射成型包覆一层保护膜,无需进行切割和抛光,通过注射包覆处理,可以在磁铁表面形成一层保护膜,有效防止氧化和腐蚀,从而延长磁铁的使用寿命,这可以减少磁铁在高温、高湿等恶劣环境下的氧化和腐蚀问题,提高磁铁的耐久性和可靠性,同时可以增加磁铁表面的硬度和耐磨性,从而提高磁铁的抗磨损能力,使其在频繁使用过程中不易磨损,提高磁铁的稳定性和可靠性。
14 烧结钕铁硼磁体的晶界扩散方法
步骤:(1)将含重稀土元素的钕铁硼磁体薄片作为晶界扩散的扩散源分别铺放在待扩散磁体的上下表面,放在真空热压炉中真空下加热,再高温加压进行晶界扩散;(2)对步骤(1)扩散处理后的磁体进行低温退火处理。传统的晶界扩散工艺需要专用的富含重稀土元素的扩散源,扩散源的制备成本较高。而扩散工艺所使用的扩散源为商业化的含重稀土元素的钕铁硼磁体,扩散源磁体制备工艺成熟,成本远低于现有的含重稀土元素的扩散源。本发明提供的晶界扩散方法具有扩散效率高、扩散源成本低、扩散后磁性能好的特点。
15 钕铁硼永磁的晶界扩散方法
通过将钕铁硼永磁磁体放入硝酸酒精中进行振荡酸洗,制备扩散源合金,进行电弧熔炼;将扩散源合金与酒精混合后制成悬浮液,均匀涂覆至钕铁硼永磁磁体的上下表面,将涂覆后的钕铁硼永磁磁体置于真空热处理环境中,制得晶界扩散钕铁硼磁体。可以促进重稀土元素向磁体内部的深度扩散,降低表面反核壳结构区域的面积,可显著改善磁体的矫顽力。提高了重稀土元素的利用率,也增加了对高丰度稀土元素的利用,有利于稀土资源的高值化和平衡应用。操作简单易行,能够进行批量化生产,可用于汽车和其他领域中的牵引电机或者发电机设备。
16 钕铁硼双镀层表面防护方法
将钕铁硼部件进行表面物理缺陷机械处理、表面除油处理之后,在酸洗液中进行超声处理;然后通过物理法气相沉积或磁控溅射法在钕铁硼部件表面沉积铜层,其中部分铜原子扩散进入钕铁硼表层并分布在晶界中;在钕铁硼部件表面沉积铜层上电镀镍层。一方面通过沉积铜层优化边界显微结构,另一方面优先选用双镀层代替三层镀层结构,减少镀层产生的磁屏蔽;实现了既不影响表面结合力,同时将很大程度上降低其磁性能的损耗甚至不产生磁性能的损耗的高耐蚀性的新型表面防护。
17 用于钕铁硼磁体的抛光液、钕铁硼磁体的表面前处理方法
抛光液包括腐蚀剂、氧化剂和缓冲剂;腐蚀剂包括硫酸、盐酸和磷酸中的一种或多种;氧化剂包括硝酸盐和/或过氧化氢;缓冲剂包括柠檬酸和/或酒石酸;硝酸盐为硝酸钠和/或硝酸钾。抛光液不仅可以去除磁体表面的氧化层,保证酸洗效果,而且还能解决酸洗后磁体表面挂灰问题。
18 高表面张力的钕铁硼磁体防腐涂料的制备方法
包括:将环氧基硅烷和丙二醇甲醚加入反应釜中,在加热条件下搅拌、混合均匀;将酸催化剂溶解于去离子水中,得到酸催化剂水溶液;将酸催化剂水溶液加入反应釜中,在30℃下搅拌反应,得到改性分散液;将二氧化硅加入反应釜中,30℃搅拌2h,降温至常温,得到改性亲水二氧化硅分散液;将环氧树脂、浆料加入分散液中,搅拌分散2h,得到钕铁硼防腐涂料。充分发挥了亲水性二氧化硅表面含有亲水的官能团的特性,通过带有环氧基团的硅烷偶联剂改性后,能和环氧树脂发生交联反应形成网状结构。不仅有效的提高了涂层的表面张力,还可以提高涂层的防腐性能。
19 高性能烧结钕铁硼扩散涂料的制备及扩散处理方法
包括以下步骤:合金粉的制备,胶水的制备,扩散涂料的制备,预处理,涂料涂覆,表干,热处理,通过合金粉组份及粒度尺寸的控制,胶水、防粘接粉、助剂的复配保证在较少扩散重稀土金属的使用条件下,可以做到矫顽力的大幅度提升,而且剩磁几乎不降低或者降低幅度很小,同时也可以解决扩散后涂层不脱落和磁片之间的不粘接现象。
20 具有抗腐蚀性的钕铁硼磁性材料及其生产工艺
解决不便于涂覆的技术问题由下述步骤制备得到;首先将钕铁硼磁性原材料放在熔炼炉中熔炼,然后在带材连铸机中加工并冷却形成合金带材而制成的,然后将合金带材加工成特定的形状,形成钕铁硼磁块,最后使钕铁硼磁块通过涂覆设备涂抹一层抗腐蚀性的材料,同时使铁硼磁块在传送带上经过涂覆刷对上层的涂抹后再经过烘干机进行烘干,然后在利用电磁铁的吸附能力通过涂覆辊对使铁硼磁块的下层进行涂抹,再通加热丝进行烘干;便于涂覆抗腐蚀性涂料,有利于提高钕铁硼磁块的抗腐蚀能力,有利于提高装置的涂覆能力,有利于提高装置涂覆的工作效率。
21 一种高耐蚀耐磨钕铁硼磁体防腐涂料的制备方法
包括:将带环氧基团的硅烷偶联剂、钛酸酯偶联剂和丙二醇甲醚混合搅拌,得到A溶液;将去离子水、丙二醇甲醚和酸催化剂,搅拌均匀,加入A溶液中持续搅拌,得到改性剂;将氧化铝粉末、云母氧化铁粉末、丙二醇甲醚和改性剂高速搅拌后进行砂磨,制得高耐蚀耐磨防腐浆料;在搅拌条件下将丙二醇甲醚、树脂、高耐蚀耐磨防腐浆料混匀,过滤后获得防腐涂料。可强化提高环氧材料的物理化学性能,提高环氧树脂的防腐性能;改善了加工工艺,提高了研磨效率;还可以与其他的有机物树脂进行复配,以实现更多的优选组合方案。
22 一种烧结钕铁硼晶界扩散磁体的制备方法
该制备方法将钕铁硼主合金速凝片与适量比例的轻稀土辅合金粉末一起置于旋转热处理炉中进行热处理,使得主合金速凝片优先进行预扩散,随后在旋转热处理炉中进行氢破碎处理,得到富稀土相包裹的磁粉,且在氢破碎颗粒内的晶界处均匀分布有富稀土相;随后依次进行气流磨、磁场成型、冷等静压和低温预烧结。从而在预烧结磁体中构筑晶界扩散通道,再直接对预烧结磁体进行晶界扩散处理,随后进行烧结和回火工艺,有效避免了重稀土元素在磁体表面的堆积,提高了重稀土元素在磁体中的扩散深度,制备出兼具高矫顽力和高方形度的烧结钕铁硼晶界扩散磁体,操作简单易行,便于批量生产。
23 强磁钕铁硼电镀老化剂
电镀老化剂包括氯化镧、氯化铈、氧化镱、羟乙基磺酸钠、二甲基乙炔二醇、乙烯基磺酸钠,所述电镀老化剂以如下比例份的原料进行制作而成:40份的氯化镧、20份的氯化铈、15份的氧化镱、15份的羟乙基磺酸钠、5份的二甲基乙炔二醇、5份的乙烯基磺酸钠,可以使电镀后的产品隔热能力提升,然后使强磁钕铁硼产品能在240℃恒温4小时后丢磁率控制在1%到2%之间,避免强磁钕铁硼产品加热240℃恒温4小时丢磁率10%的问题发生,可以使强磁钕铁硼电镀产品的表面结晶更加细腻均匀,使强磁钕铁硼产品表面更容易发生钝化,提升强磁钕铁硼产品的抗老化时间。
24 高矫顽力、高耐蚀性钕铁硼磁体及其制备方法
钕铁硼磁体的晶界处包括稀土无机金属盐和非稀土金属氮化物。以稀土无机金属盐为扩散源,为了提高稀土无机金属盐的渗透率,通过对钕铁硼磁体基体的晶界改造,在中磨和/或气流磨工序和/或压型工序中添加非稀土金属氮化物,为后续的稀土无机金属盐的晶界扩散建立扩散“锚点”。制备的钕铁硼磁体的晶界细长而连续,在晶界处有明显的稀土无机金属盐的富集,依靠稀土无机金属盐以及非稀土金属氮化物对晶粒的钉扎作用,使钕铁硼磁体在外磁场及高温的环境下,主相晶粒更难以被翻转,可以明显提高钕铁硼磁体的抗退磁能力。
25 用于钕铁硼磁性材料表面处理的锆化液及其使用方法
锆化液包括以下组分:氟锆酸或其盐;氟钛酸或其盐;成膜剂;氧化剂;防腐剂。提出的锆化液,可常温使用,处理时间短,其成膜均匀致密,呈深灰色,防腐性能好,可替代目前钕铁硼磁性材料表面处理用的磷化剂,可成为一种环保型的钕铁硼磁性材料表面处理液。
26 一种用于钕铁硼磁材表面化学镀镍的镀液及镀层镀制方法
镀液中各组分的质量浓度范围是:30~80g/L含镍主盐、160~280g/L配位剂、30~80g/L缓冲剂、130~150g/L还原剂和1~3.5g/L稳定剂,且所述镀液pH值为11~13。镀液可避免电沉积过程中含镍电镀液在钕铁硼磁材表面出现氢离子析出现象,不会破坏钕铁硼磁材自身的磁性能,保证了钕铁硼磁材磁性能的稳定性和表面耐腐蚀性。
27 除灰剂和用途及钕铁硼磁体磷化前处理工艺
该除灰剂包括:碱式碳酸盐、焦磷酸盐和C5~C25烷基酚聚氧乙烯醚;其中,碱式碳酸盐、焦磷酸盐和C5~C25烷基酚聚氧乙烯醚的用量比为9~11g:43~55g:0.042~0.055mL。除灰剂除灰效果较好,除灰后的钕铁硼磁体块的盐雾防腐效果较好。
28 钕铁硼表面改性六方氮化硼增强环氧复合涂层的制备方法
目的是为了解决目前钕铁硼表面电泳水性环氧涂层的耐蚀性低,以及对六方氮化硼在水性环氧树脂的分散性较差的问题,制备方法包括六方氮化硼的改性、电泳前处理、电泳液的配制、NdFeB磁体在电泳液中电泳形成环氧涂层、涂层固化五个步骤;由于聚多巴胺(PDA)具有强亲水性,利用盐酸多巴胺在h‑BN(六方氮化硼)上自聚合形成PDA‑hBN复合填料,极大提升六方氮化硼在水中的分散性;将PDA‑hBN加入到电泳液中通过阴极电泳形成的环氧复合涂层耐蚀性大大提高;PDA在六方氮化硼上的自聚合为非共价连接,所以填料的制备工艺流程简单,而且对环境友好。
29 钕铁硼永磁材料电镀装置和电镀方法
电镀方法包括步骤一:钕铁硼永磁材料为空心的柱状磁铁,钕铁硼永磁材料送入带式运输机上且所述柱状磁铁的轴线与带式运输机输送方向垂直;步骤二:所述柱状磁铁推入托板中,待柱状磁铁位于弧槽内后调节托板的高度与支撑杆的高度对应;步骤三:使支撑杆前低后高,随后使托板前低后高将柱状磁铁送入支撑杆上;步骤四:采用悬空的方式对延伸件进行输送,使支撑杆携带柱状磁铁进入电镀池;步骤五:收集电镀后的柱状磁铁时,使延伸件在收集地点自由端降低,将柱状磁铁送至流水线上。通过提高频繁的转运与材料的装卸效率来提高钕铁硼永磁材料电镀的效率。
30 钕铁硼磁钢钝化液的制备及钝化处理方法
钕铁硼磁钢钝化液的制备包括钝化液A的制备和钝化液B的制备;钝化处理方法包括步骤S1钕铁硼的预处理工艺和步骤S2钕铁硼的钝化处理工艺;其中,步骤S2钕铁硼的钝化处理工艺包括以下步骤:步骤S21:将预处理过的钕铁硼磁钢黑片在所述钝化液A中浸泡2‑6min;步骤S22:去离子水漂洗30‑45s;步骤S23:在所述钝化液B中浸泡1‑5min;步骤S24:无水乙醇洗30‑45s;步骤S25:在烘箱或烘道100‑120℃烘干2‑5min;步骤S26:将烘干后的磁片转移至高温钝化炉进行热处理,在300‑450℃保温20‑30min,之后在5min内快速冷却至150‑200℃,然后冷却至室温出料,钝化处理完成。本发明制备的钝化膜盐雾性能提高,防腐性能大大提高。
31 钕铁硼镀锌层无铬钝化液及钝化方法
钕铁硼镀锌层无铬钝化液,含有可溶性硅酸盐和可溶性铈(Ⅳ)盐,其中可溶性硅酸盐为成膜剂,可溶性铈(Ⅳ)盐为氧化成膜剂。解决了现有技术中硅酸盐镀锌层钝化膜易于脱落,在钕铁硼工件浸渍翻动过程中存在破损和脱落;钝化膜钝化速度快则钝化膜变薄,厚度不足;钝化过程中钝化膜不够致密,导致耐腐蚀性下降的问题。实现了对钕铁硼工件镀锌层的无铬化钝化耐腐蚀保护。
32 无磷无氰的钕铁硼磁铁的镀锌工艺
步骤:S1)除油:将待处理的钕铁硼磁铁放入加热的除油液浸泡,水洗后再放入所述除油液中浸泡并开启超声波除油,得到除油钕铁硼磁铁;S2)酸洗除灰:放入常温的酸洗剂中,搅拌浸泡,水洗沥干后,放入除灰剂中电解处理,得到除灰钕铁硼磁铁;S3)镀镍镀锌:放入常温的活化液中浸泡,水洗后,经瓦特镍电镀处理,再放入镀锌液中镀锌,得到镀锌钕铁硼磁铁;S4)出光钝化:将所述镀锌钕铁硼磁铁放入硝酸溶液浸泡,再放入钝化液中钝化,即制得所述钕铁硼磁铁;所述镀锌钕铁硼磁铁含有的镀镍层厚度为30±5μm;不含磷和氰元素,环保安全无污染。
33 一种耐腐蚀性钕铁硼材料、其浆料及其制备方法
其钕铁硼基材基材表面的晶界处设有氧化石墨烯层,所述钕铁硼基材表面到中心的碳含量具有浓度梯度,且从表面到中心的碳含量浓度逐步降低。本发明借助多层二维石墨烯的韧性,降低烧结钕铁硼材料的脆性,从而降低磕边磕裂比例;通过渗入到产品表面的多层二维石墨烯提高烧结钕铁硼永磁材料的耐腐蚀性。
34 钕铁硼磁体电镀铜镍工艺
包括:步骤一、对钕铁硼磁体进行前处理;步骤二、在经过前处理后的钕铁硼磁体外表面进行电镀铜处理,形成铜镀层;步骤三、在钕铁硼磁体的铜镀层的外表面进行电镀镍处理,形成第一镍镀层;步骤四、在钕铁硼磁体的第一镍镀层的外表面进行化学镀镍处理,形成第二镍镀层。本发明提供了一种可提高钕铁硼磁体电镀铜镍结合力及耐蚀性的工艺方法,其通过对电镀前处理过程和电镀过程进行改善,增加与镀层结合的面积增加镀层与基体的结合强度,大大提高钕铁硼磁体的耐腐蚀性能,降低了钕铁硼磁体的热减磁率。
35 降低基材腐蚀的烧结钕铁硼镍铜镍镀层退镀工艺
用于解决不能在去除表面镍铜镍镀层的同时降低对烧结钕铁硼磁体的腐蚀性,以进一步提高钕铁硼磁体的再利用率的技术问题;退镀工艺的步骤包括退镀液配制、浸泡退镀、清洗干燥,退镀液以硝酸和氢氟酸为主成分;阳离子表面活性剂能够以氢键与硝酸、氢氟酸分子中的氢键合,使其氨基带上正电荷,带来良好表面活性的同时降低了氢氟酸的挥发性;配合乙二胺四乙酸四钠的金属络合作用以及活性缓蚀剂的缓蚀作用,使得退镀工艺能够高效完全的去除烧结钕铁硼磁体表面的镍铜镍镀层,降低对钕铁硼磁体的腐蚀性,提高钕铁硼磁体的再利用率。
36 一种钕铁硼工件三价铬镀铬方法
在钕铁硼基体上次进行除油、除锈、电解活化,柠檬酸盐预镀镍、焦磷酸盐镀铜、镀酸铜、镀光亮镍、三价铬镀铬、及稀土电解保护。本发明公开的钕铁硼工件三价铬镀铬方法所制备的组合镀层,按照GB/T 10125–2012《人造气氛腐蚀试验 盐雾试验》进行中性盐雾试验,硫酸盐三价铬白铬镀层120h镀件表面无锈蚀,氯化物三价铬白铬镀层96h镀件表面无锈蚀,硫酸盐三价铬黑铬镀层72h镀件表面无锈蚀。本组合镀层具有较高的耐蚀性,其制备方法具有良好的应用前景。
37 一种钕铁硼永磁体的表面腐蚀防护方法
为解决现有的针对钕铁硼进行表面防护的方法都较为冗长复杂的问题,包括将钕铁硼永磁体表面喷涂超疏水涂层,超疏水涂层在磁场作用下在钕铁硼表面形成微纤毛结构,然后置于烘箱中固化。使处理后的钕铁硼永磁体表面形成有微纤毛结构的超疏水涂层,超疏水涂层可有效隔绝水与氧气,使钕铁硼永磁体具有优良的耐腐蚀性,并且微纤毛结构具有良好的韧性,赋予钕铁硼永磁体优良的耐磨性及机械稳定性,适用于不同尺寸、不同形状钕铁硼磁体,操作简便、无污染。
38 一种钕铁硼磁体用合金复合晶界扩散剂及其制备方法与应用
合金复合晶界扩散剂,由含重稀土粉末与不含重稀土的低熔点合金粉末按照质量比(1.11~3.63):1复合后,再与有机粘结剂混合得到。通过将复合扩散剂涂敷于钕铁硼磁体表面并进行扩散热处理,获得的磁体综合磁性能比经单合金扩散磁体的更好,特别表现在矫顽力和方形度上,实现低温、短时的扩散热处理条件下制备出高矫顽力高磁能积的烧结磁体与纳米晶磁体。
39 一种钕铁硼电镀锌用无铬蓝白钝化液及钝化方法
解决了现有技术中铬酸盐蓝白钝化液毒性强,无铬蓝白钝化液不稳定,耐蚀性较差的问题。克服了铬酸盐钝化技术毒性大、不环保等缺点,可实现电镀锌及镀锌零部件的清洁生产,符合环保要求,钝化膜外观呈均匀蓝白色,经中性盐雾试验出白锈的时间超过32小时,接近于三价铬蓝白钝化的耐腐蚀性能。
40 一种应用于钕铁硼表面处理的超薄镀层电镀方法
它在钕铁硼基材表面进行镀层,从里到外分别为电镀冲击铜层、电镀脉冲铜层、电镀镍钨合金层、低速化学镍镀层和高磷化学镍镀层;其中,钕铁硼基材表面镀层的总厚为4~4.5μm,电镀冲击铜层的厚度为0.5~0.6μm,电镀脉冲铜层的厚度为0.8~1.0μm,电镀镍钨合金层的厚度为0.3~0.5μm,低速化学镍镀层的厚度为0.4~0.5μm。现有常规化学镀镍只有一层常规高磷化学镍,采用双层化学镀镍,即再正常镀高磷化学镍前,先采用低镀速低孔隙率的特殊化学镍先镀至约0.4~0.5微米,然后转入常规高磷化学镍镀至所需厚度。与现有技术相比,要提升镀层质量及性能方面,优势明显,耐腐蚀性更好,磁屏蔽更低。
41 一种钕铁硼磁体表面预处理的复合处理剂及其制备方法和应用
复合处理剂包含硅烷偶联剂、改性剂和成膜助剂,同时配以pH调节剂调节复合处理剂的pH,其能够形成与钕铁硼磁体结合性良好、耐腐蚀性强、无空洞、裂陷、致密均匀的涂层,且后续表面进一步涂层处理时,与涂层的结合性非常好,有利于钕铁硼磁体的性能长期稳定。
42 一种高性能烧结钕铁硼磁体的晶界扩散工艺
、 将不含重稀土元素的烧结钕铁硼初始磁体预处理后采用磁控溅射方法在表面依次沉积重稀土元素Dy和重稀土元素Tb双层膜,经真空热处理晶界扩散工艺,制得高矫顽力烧结钕铁硼磁体,该工艺可有效提高烧结钕铁硼磁体的矫顽力。
43 一种提高烧结钕铁硼磁体表面耐腐蚀性的方法
采用二硒化钼纳米片掺杂制备烧结钕铁硼磁体材料,不仅可以实质性提高磁体的耐腐蚀性,无需在磁体表面进行防腐蚀涂层制备,避免防腐蚀涂层存在的均匀性差、结合力低的问题;同时还能保证磁体的高磁性能,解决现有合金化法所存在的明显降低磁体的磁性能的问题。
44 一种高矫顽力、高磁能积烧结钕铁硼永磁材料及制备方法
包括主合金和至少一种辅合金,主合金包括至少一种偏向高磁能积设计的RE2(Fe,M)14B金属间化合物的主合金A和至少一种偏向高矫顽力设计的RE2(Fe,M)14B金属间化合物的主合金B,辅合金为晶界相物质,主合金和辅合金于固体状态下混合,在混合之前,首先将主合金制作成合金薄片,将辅合金制作成薄片状、块状或较大颗粒状的合金。一种高矫顽力、高磁能积烧结钕铁硼永磁材料及制备方法,为批量化生产高矫顽力、高磁能积的“双高”烧结钕铁硼永磁材料提供工艺与技术支撑。
45 一种钕铁硼磁体表面高结合力高耐蚀涂层的制备方法
步骤:电镀Zn镀层:采用电镀方法在预处理后的磁体表面电镀Zn镀层;激光重熔处理:采用激光重熔技术对磁体表面的Zn镀层进行处理,使Zn镀层的孔隙率为3‑4%;热处理:对激光重熔处理后的Zn镀层进行热处理。能够显著降低Zn镀层的孔隙率,使Zn镀层与基体之间形成冶金结合,并有效解决磁体前处理过程中部分残留的氢离子等有害杂质,解决了传统电镀Zn镀层后在进行钝化处理所带来的环境污染问题。最终在磁体表面制备出高结合力、高耐蚀的Zn镀层。
46 烧结钕铁硼磁体表面耐蚀防护涂层的制备方法
其包括:步骤一、将钕铁硼磁体经超声波清洗和酸洗预处理,去除表面油渍和氧化皮,再将钕铁硼磁体喷砂处理;步骤二、将Ni基复合粉末和Cu基复合粉末通过超音速火焰喷涂的方法喷涂于钕铁硼磁体表面。采用Ni基复合粉末和Cu基复合粉末做喷涂材料,结合多层喷涂工艺能达到更好的耐腐蚀效果。
47 一种钕铁硼磁体、钕铁硼磁体表面处理液及表面处理方法
钕铁硼磁体包括钕铁硼磁性基体和钕铁硼磁性基体表面的电镀层,所述钕铁硼磁体中钕铁硼磁性基体与所述电镀层交界处的微观粗糙度值为5.5~8.5μm;所述方法包括:将钕铁硼磁性基体进行脱脂脱油处理后置于表面处理液中进行表面微细化处理,得到表面微细化处理后的钕铁硼磁性基体;将表面微细化处理后的钕铁硼磁性基体进行电镀处理;表面处理液为无机酸和氯化盐溶液的混合溶液,表面处理液中氢离子浓度为0.15~0.95g/L,氯离子浓度为0.3~6g/L,处理过的钕铁硼磁性基体与电镀层结合力强,并且电镀层的表面致密均匀,具有优异的防腐性能。
48 一种钕铁硼永磁体镀锌产品无铬钝化的方法
镀锌工艺步骤包括:电镀→三级逆流水洗→出光→三级逆流水洗→钝化液钝化→热水水洗→烘干,钝化使用复合无铬镀锌钝化液钝化,复合无铬镀锌钝化液制备步骤为:称取相应质量的钼酸盐、磷酸溶于去离子水中并搅拌均匀,将硅改性丙烯酸树脂溶液、OP‑10加入到上述混合液中超声分散10‑30min后得到复合无铬镀锌钝化液,方法易实施,效果良好,增加了防腐性能及满足长期存放达因值仍合格的要求,采用复合钝化液减少了镀锌工艺中的封闭处理环节,节省生产时间,增加效率。
49 一种涂层、钕铁硼磁体及其制备方法和应用
涂层包括第一涂层和第二涂层,所述第一涂层布置在磁体上,所述第二涂层布置在所述第一涂层上;其中,所述第二涂层通过涂料组合物制备得到;所述涂料组合物含有发泡体;所述发泡体在膨胀温度或高于膨胀温度下加热时,所述发泡体可产生膨胀,所述膨胀不可逆。磁体表面含有涂层,不仅改善了因自身孔隙大耐腐蚀较低的劣势,还提高了磁体整体的耐腐蚀性,绝缘性,厚度一致性佳,具有较好的耐蚀性,以及与磁体和磁钢槽的结合力。
50 一种钕铁硼磁钢表面钝化处理方法
先制备半成品磁钢,再表面预处理,然后表面活化处理,再进行表面钝化热处理,最后成品检验和包装;使用的钝化液在磁体表面铺展性能好,可在磁钢的表面形成的保护膜均匀稳定,极大地提高了对磁钢的耐蚀性,使得磁钢的表面颜色均一,颜色为深蓝色,而且采用的钝化液不产生对人体和环境有害物质,安全环保;操作简单,用时短,易于实现产业化。
51 一种钕铁硼磁体表面悬浮液等离子喷涂涂层的制备方法
步骤:(1)制备稀土悬浮液;(2)采用悬浮液等离子喷涂技术在钕铁硼磁体双面进行喷涂,得到悬浮液等离子喷涂涂层;(3)晶界热扩散方法处理喷涂后的磁体。等离子喷涂技术结合晶界热扩散技术具有生产效率高,环境友好等特点,能够有效提升重稀土元素在磁体中的扩散深度,促进磁性能的提升,同时也有助于加速推动晶界扩散技术的产业化进程。
52 一种钕铁硼磁体表面玻璃涂层的制备方法
步骤:将压型后的钕铁硼压坯进行一级回火处理,对一级回火处理后得到的钕铁硼磁体进行表面处理,将按比例称取的玻璃原料充分混合后进行融化,对玻璃熔融体进行退火处理,然后将玻璃球磨成粉,将玻璃釉料制备步骤得到的玻璃釉料作为熔覆材料,采用激光熔覆技术在表面处理后的钕铁硼磁体表面上涂覆玻璃涂层,对涂覆玻璃涂层的钕铁硼磁体进行二级回火处理;采用激光熔覆技术在烧结钕铁硼磁体表面制备的玻璃涂层具有高的强度、良好的延展性、热稳定性和化学稳定性等优点,以及优异的耐磨、耐热、耐蚀、耐酸碱腐蚀等性能,且不会对钕铁硼磁体产生磁屏蔽作用。
53 一种同时提高烧结钕铁硼矫顽力和耐蚀性的方法
步骤:(1)镀膜前处理;(2)辉光等离子体清洗;(3)晶界扩散层—重稀土涂层沉积;(4)阻隔层—高熵合金氮化物涂层沉积;(5)耐蚀层—高熵合金涂层沉积;(6)真空热处理;(7)待样品冷却至室温,取出样品,完成对烧结NdFeB磁材的处理。该方法采用磁控溅射在烧结NdFeB磁材表面制备一种新型多层涂层,其中最底层:采用重稀土涂层作为晶界扩散涂层;最外层:采用高熵合金涂层作为耐蚀涂层;中间层:采用高熵合金氮化物涂层作为阻隔涂层。三种涂层所组成的多层涂层在经过真空热处理后,可解决烧结NdFeB矫顽力和耐蚀性无法同时提高的问题。
54 一种钕铁硼永磁铁表面镀层及其制备方法
步骤:S1.钕铁硼永磁铁电极的制备:将钕铁硼永磁铁用砂纸进行打磨,然后浸泡在无水乙醇中超声清洗10‑20min,烘干,用铜导线连接,得到钕铁硼永磁铁电极;S2.镀层的制备:将钕铁硼永磁铁电极依次进行除油、活化、改性、化学镀和清洗步骤后,干燥,400‑500℃煅烧1‑2h,冷却,即得。本发明采用化学镀的方法在钕铁硼永磁铁表面形成一层镀层,该镀层由致密的氧化铝薄膜和Ni‑Cu‑P合金组成,Ni‑Cu‑P合金中,P含量较高,该合金为非晶态结构,具有极好的抗腐蚀性能,且不会产生磁屏蔽效应,合金镀层呈胞状结构,颗粒较均匀。
55 一种以烧结钕铁硼为基体的Zn-Al涂层及其制备方法
Zn‑Al涂层由A组分、B组分、C组分和D组分组成,其中A组分由Zn粉、Al粉分散剂、γ‑(2,3‑环氧丙氧)丙基三甲氧基硅烷、去离子水、乳化剂和异辛醇组成;B组分由γ‑(2,3‑环氧丙氧)丙基三甲氧基硅烷、的甲醇和去离子水组成;C组分由磷钼酸钠和去离子水组成;D组分由增稠剂与去离子水组成。本发明得到的Zn‑Al涂层耐腐蚀性能强,耐中性盐雾试验1000h后表面没有锈点;具有硬度高、结合力强的特点,其硬度为5H,结合力为1级,并且表面具有金属光泽。制备过程成本较低,绿色环保,无三废排放,符合绿色环保性表面处理技术的发展要求。
56 一种烧结钕铁硼磁体表面高耐蚀涂层及其制备方法
采用等离子喷涂方式在烧结钕铁硼磁体表面制备出由纳米氧化锆、纳米铝粉和纳米锌粉组成的纳米结构涂层,解决了烧结钕铁硼磁体表面常规涂层耐腐蚀性能较差和生产、制备、使用过程中易造成的环境污染问题,采用本发明的制备方法制得的高耐蚀涂层具有良好的柔韧性、附着力、抗冲击性、耐磨性、耐高温和耐蚀性,可以为烧结钕铁硼磁体提供更长久的腐蚀防护作用。
57 一种烧结钕铁硼磁体表面复合涂层的制备方法
步骤:将金属基合金粉末与金属基增强材料混合均匀;采用等离子体熔覆工艺,在预处理后的烧结钕铁硼的表面制备金属基熔覆层;将陶瓷基粉末与陶瓷基增强材料混合均匀;采用等离子体熔覆工艺,在金属基熔覆层上制备陶瓷基熔覆层;对涂覆后的烧结钕铁硼磁体进行热处理。通过本发明制备的复合涂层致密无孔隙,具有高结合力、高耐蚀、高耐磨的特点,能够为烧结NdFeB磁体提供更加优异的腐蚀防护作用。
58 一种具有防腐耐磨镀层的钕铁硼永磁体及其制备方法
该制备方法在不损害钕铁硼永磁体磁性能的同时,在永磁体表面制备得到结合力强、耐腐蚀效果好、抗磨损的钕铁硼永磁体防腐耐磨镀层。该制备方法包括如下步骤:对钕铁硼永磁体进行镀膜前处理,让永磁体露出新鲜表面;然后将钕铁硼永磁体移至真空镀膜机真空镀膜室内,在≤150°C下,采用磁控溅射工艺在钕铁硼永磁体表面依次沉积结合层、内保护层和外保护层。复合膜层结构的设计实现耐腐蚀、抗磨损性能并存,保证表层薄膜出现局部磨穿时膜层仍有效,确保磁体在极端工况下仍能正常工作。
59 一种制备钕铁硼磁体表面防腐涂层的方法
步骤:1)表面预处理:清洗磁体表面,烘干;2)表面清洗:抽真空,升温至100℃,通入氩气,腔体加负偏压,对样品进行等离子清洗;3)表面蒸镀:抽真空,升温至200~300℃,通入辅助气体,辉光放电产生等离子体,轰击金属靶材,真空蒸镀,在钕铁硼磁体表面蒸镀上复合涂层;辅助气体包括第一组分、第二组分和第三组分,第一组分为硅氮烷,第二组分为氮气、氨气中的一种或两种,第三组分为氩气、氦气;4)蒸镀结束后,继续抽真空至真空室温度降至100℃以下,关闭设备。采用真空热蒸镀生成无机纳米颗粒‑金属复合薄膜,使得钕铁硼磁体表面的耐腐蚀性能提高。
60 一种钕铁硼磁体表面防腐涂层的制备方法
步骤:1)表面预处理:清洗磁体表面,烘干;2)表面清洗:抽真空,升温至100℃,通入氩气,腔体加负偏压,对样品进行等离子清洗;3)表面蒸镀:抽真空,升温至200~300℃,通入辅助气体,辉光放电产生等离子体,轰击金属靶材,真空蒸镀,在钕铁硼磁体表面蒸镀上复合涂层;辅助气体包括第一组分、第二组分和第三组分,所述第一组分为硅烷,第二组分为氧气、一氧化二氮,所述第三组分为氩气、氦气;4)蒸镀结束后,继续抽真空至真空室温度降至100℃以下,关闭设备。采用真空热蒸镀生成无机纳米颗粒‑金属复合薄膜,使得钕铁硼磁体表面的耐腐蚀性能提高。
61 一种钕铁硼永磁器件表面涂层设备及表面涂层方法
设备主要包括进料阀门、进料室、进料隔离阀门、真空镀膜室、出料隔离阀门、出料室、出料阀门、溅射装置、承载装置。溅射装置至少包括离子源、多弧靶、磁控溅射靶和射频溅射靶中的2种以上组合而成,溅射装置为3台以上,溅射装置中包含的靶材至少为选自Tb、Dy、Nd、Pr、Y、Nb、Al、Ti、Zr、Ni、Cr中的一种以上。工作时,需要涂层的钕铁硼永磁器件置于承载装置上在传送辊上移动并顺序通过进料阀门、进料室、进料隔离阀门、真空镀膜室、出料隔离阀门、出料室、出料阀门;置于承载装置上的钕铁硼永磁器件在真空镀膜室内进行涂层。
62 一种烧结钕铁硼磁体表面功能膜层及其制备方法
包括磁体预处理工艺、磁体沉积前处理以及物理气相沉积法制备功能膜层。该功能膜层是以Al2O3层和TiN层为周期的多周期复合膜层,该功能膜层同时具有15GPa以上的硬度、良好的腐蚀防护性能和抗氧化性能。与此同时通过层和TiN层的交替沉积,避免形成贯穿单层薄膜的针孔、通孔和微裂纹等组织缺陷的出现,较好地解决了传统单层薄膜厚度难以控制的缺陷,并通过Al2O3的加入增强了磁体的耐高温氧化性。采用双层膜交替沉积,多周期组合的形式,减少了膜层内应力,增强了膜基结合力。通过在钕铁硼表面沉积功能膜层扩展了钕铁硼在高湿热及酸碱环境下的应用领域。
63 一种钕铁硼磁体复合镀镍方法
先对钕铁硼磁体进行预处理,然后对预处理后的钕铁硼磁体进行连续磁控溅射镀镍处理,最后对连续磁控溅射镀镍处理后的钕铁硼磁体进行电镀化学镍处理;优点是连续磁控溅射镀镍处理在钕铁硼磁体本身表面形成致密的溅射镍层,电镀化学镍处理在溅射镍层表面形成致密的电镀镍层,保证钕铁硼磁体具有较高的防腐性和耐磨性,磁控溅射处理过程与电镀化学镍处理过程中均无尖点效应,溅射镍层和电镀镍层形成的复合镀层均匀性好,产品尺寸易控制,而且采用连续磁控溅射镀镍,缩短电镀制程,废水将减少70%。
64 一种钕铁硼复合镀层及其制备方法和应用
包括钕铁硼基材层、位于所述钕铁硼基材层上表面的至少一层水镀层及位于所述水镀层上表面的至少一层PVD真空镀层。该钕铁硼复合镀层利用水镀层和PVD真空镀层的协同作用,使得两不同镀种中的孔隙错开,减小孔隙率,提高钕铁硼复合镀层的致密度,并具有较高的硬度,提高钕铁硼复合镀层的耐磨性和耐腐蚀性,钕铁硼复合镀层的盐雾试验可达144小时以上,硬度超过3000HV,从而提高了穿戴式产品(耳机、手表、手机、转接头)的可靠性和耐用年限。
65 一种改善钕铁硼磁体矫顽力和耐磨耐蚀性能的方法
以Al‑Cr合金作为靶材,通过磁控溅射在钕铁硼磁体基体表面制备Al‑Cr合金层,然后在大气气氛下进行扩散热处理。本发明获得的Al‑Cr镀层经过扩散热处理工艺可有效提高钕铁硼磁体的磁性能,特别是矫顽力。与此同时,所述的Al‑Cr金属/氧化物镀层相比于纯Al镀层具有更好的金属光泽、更高的硬度和耐磨性、更好的抗划伤能力,并且具有很好的耐腐蚀性能。在空气中进行扩散热处理降低了对热处理设备的要求,生产成本低。
高密度高强度石墨国内外研发现状
美国POCO Graphite Inc 利用超细粉石墨材料在2500℃以上,压力作用下的蠕变特性,成功开发再结晶石墨。再结晶石墨是在高温高压下使多晶石墨晶粒长大并走向排列而得到的高密度材料,石墨体内的缺陷(砂眼、裂纹等)消失,体积密度可达到1. 85-2.15g/cm3。
日本住友金属公司用MCMB 成功研制体积密度1.98-2.00g/cm3高密度各向同性石墨。日本无机材料研究所在沥青的苯不溶物添加蒽油和1, 2一苯并菲等高沸点有机化合物,加热至350-600℃,制成粒径>1-100 的MCVIB 在4MPa的成型压力下成型,石墨化后得到高密度各向同性石墨。
揭斐川电气公司用B阶缩合稠芳多核芳烃(COPNA)树脂为原料,在200 ℃模压成型,固化后,再在400-500℃的条件下和非氧化性气氛中热压处理,经过后续工作得到高石墨化、导热性和导电性俱佳的高强高密(1. 85g/cm3) 石墨材料。
与发达国家相比还有很大差距
然而,尽管天然石墨是中国的优势矿物资源,储量、产量、国际贸易量均居世界前位,但中国的石墨产业布局严重畸形的局面却亟待改变。民进中央长期调研发现,长期以来国内石墨产业矿产资源资料落后,生产品级划分不严,浪费严重,基本上处于采选和初加工阶段,技术严重落后,产品绝大部分为普通中高炭矿产品。值得注意的是,日、美等发达国家将天然石墨作为战略资源,却利用中国的廉价原料,深加工成能够在电子、能源、环保、国防等领域应用的先进石墨材料,以极高的价格占领国际市场并返销中国。
我国石墨主要出口国家分别是美国、日本、韩国、德国等,每年出口量占世界各国总出口量的80%以上。日本是全球最大的石墨进口国,其中98%从我国进口,美国天然鳞片石墨完全依靠进口,其中48%来自我国。我国石墨初级产品的出口国又恰恰是我国高附加值石墨产品的进口国。在我国大量出口石墨初级产品的同时,美、日、韩等发达国家却早早把石墨列为战略资源,严格控制开采,以采代购。
高纯石墨 发展高附加值石墨制品的关键
中国生产的天然石墨产品中,绝大部分是最初级的加工产品。这些初级加工产品,都面临着产能过剩的问题,而产能过剩又压制了价格。伴随初级产品出口为主,中国石墨的高附加值产品研发和生产则明显缺失,随着科学技术的不断进步,高纯微细石墨的用途越来越广。普通的高碳石墨产品已不能满足原子能,核工业的飞速发展急需大量的高纯石墨。
据2011年不完全统计,中国高纯石墨年需求量约为20万吨左右。国外以其技术优势在高纯石墨方面占据领先地位,并在石墨高技术产品方面对中国进行禁运。目前中国高纯石墨技术只能勉强达到纯度99.95%,而99.99%乃至以上的纯度只能全部依赖进口。2011年,中国天然石墨产量达到约80万吨,均价约为4000元/吨,产值约为32亿元。目前,进口99.99%以上高纯石墨的价格超过20万元/吨。其进出口由于技术壁垒导致的价差非常惊人。
加强技术研发,提高产品质量
高密度高强度石墨较传统石墨除了具有高密度,高强度的强度外,还具有良好的热稳定性。良好的热稳定性是使石墨高温使用中抗氧化性能大幅度提高,特别在模具行业,比传统石墨可延长20-50% 的寿命。
对于中国石墨行业而言,技术进步是其发展的重心和关键。许多国家,尤其是一些发达国家,不断致力于提高技术水平来开发石墨新产品和新用途,甚至由于多年积累,已经形成寡头垄断的态势。例如氟化石墨主要由美、日、俄生产;膨胀石墨主要由美、日、德、法等国垄断;其中高纯膨胀石墨只有日本生产。
近几年,我国涌现出许多石墨新技术和优秀科技成果,高纯石墨材料开发与应用取得了可喜的进步。只有不断依靠技术创新提高企业核心竞争力作为生存发展之道,不断培育技术人才,加大科技投入,提高科技转化、创新能力,才是石墨企业发展的根本。 为帮助国内石墨生产企业提高产品质量,发展高端产品,我们特收集整理精选了本专集资料。
石墨提纯 现有工艺存在缺陷
随着技术的不断发展,通过选矿工艺得到的鳞片状高碳石墨产品己不能满足某些高新行业的要求,因此需要进一步提高石墨的纯度。目前,国内外提纯石墨的方法主要有浮选法、酸碱法、氢氟酸法、氯化焙烧法、高温法等。其中,酸碱法、氢氟酸法与氯化焙烧法属于化学提纯法,高温提纯法属于物理提纯法。
1、 浮选法:是利用石墨的可浮性对石墨进行富集提纯,适应于可浮性好的天然鳞片状石墨,石墨原矿经浮选后最终精矿品位通常为90%左右,有时可达94%~95% 。使用此法提纯石墨只能使石墨的品位得到有限的提高,是因为部分硅酸盐矿物和钾、钠、钙、镁、铝等化合物里极细粒状浸染在石墨鳞片中,即使细磨也不能完全单体解离,所以采用选矿方法难以彻底除去这部分杂质。
2、 酸碱法:是当今我国高纯石墨厂家中应用最广泛的方法,其原理是将NaOH与石墨按照一定的比例混合均匀进行锻烧,在500-700℃氯化焙烧法的高温下石墨中的杂质如硅酸盐、硅铝酸盐、石英等成分与氢氧化钠发生化学反应,生成可溶性的硅酸钠或酸溶性的硅铝酸钠,然后用水洗将其除去以达到脱硅的目的;另一部分杂质如金属的氧化物等,经过碱熔后仍保留在石墨中,将脱硅后的产物用酸浸出,使其中的金属氧化物转化为可溶性的金属盐,而石墨中的碳酸盐等杂质以及碱浸过程中形成的酸溶性化合物与酸反应后进入液相,再通过过滤、洗涤实现与石墨的分离,从而达到提纯的目的。但是此种提纯方法的缺点在于需要高温锻烧,设备腐蚀严重,石墨流失量大以及废水污染严重,且难以生产碳含量99.9%及以上的高纯石墨。
3、 氢氟酸提纯法:是利用氢氟酸能与石墨中几乎所有的杂质反应生成溶于水的化合物及挥发物,然后用水冲洗除去杂质化合物,从而达到提纯的目的。使用氢氟酸法提纯石墨,除杂效率高、能耗低,提纯所得的石墨品位高、对石墨的性能影响小。但由于氢氟酸有剧毒和强腐蚀性,生产过程中必须有严格的安全防护措施,对于设备要求严格导致成本升高;另外氢氟酸法产生的废水毒性和腐蚀性都很强,需要严格处理后才能排放,环保环节的投入又使氢氟酸法的成本大大增加,如污水处理稍不到位,会对环境造成巨大污染。
4、氯化焙烧法是将石墨矿石在一定高温和特定的气氛下焙烧,再通入氯气进行化学反应,使石墨中的杂质进行氧化反应,生成熔沸点较低的气相或凝聚物的氯化物及络合物逸出,从而达到提纯的目的。由于氯气的毒性、严重腐蚀性和污染环境等因素,在一定程度上限制了氯化焙烧工艺的推广应用。
5、高温法提纯石墨,是因为石墨是自然界中熔点、沸点最高的物质之一,熔点为3850 士50℃,沸点为4500℃,远高于所含杂质的熔沸点,它的这一特性正是高温法提纯石墨的理论基础。将石墨粉直接装入石墨士甘锅,在通入惰性保护气体和少量氟利昂气体的纯化炉中加热到2300~3000℃,保持一段时间,石墨中的杂质因气化而溢出,从而实现石墨的提纯。虽然高温法能够生产99.99%以上的超高纯石墨,但因锻烧温度极高,须专门设计建造高温炉,设备昂贵、投资巨大,对电力口热技术要求严格,需隔绝空气,否则石墨在热空气中升温到450℃时就开始被氧化,温度越高,石墨的损失就越大。这种设备的热效率不高,电耗极大,电费高昂也使这种方法的应用范围极为有限,只有对石墨质量要求非常高的特殊行业(如国防、航天等)才采用高温法小批量生产高纯石墨。
(二) 低能耗石墨提纯技术 国内最新研制
据恒志信网消息:针对石墨提纯现有技术存在的问题。武汉工程大学研制成功一种对天然石墨进行高纯度提纯的方法及装置。该方法能耗低,所得到的石墨的纯度高,其装置简单。
与现有技术相比,新工艺的有益效果是:
1、工艺新颖、装置简单、能耗低、升温迅速,是采用等离子体炬加热技术,利用热等离子体局部超过4000℃的高温,使石墨原料中的杂质在短时间内充分气化,实现提纯石墨目的,可以实现石墨的连续提纯。
2、原理与现行高温提纯法一致,但由于是将石墨粉直接送入具有极高温度的等离子体焰流中直接加热,因此热利用率极高。而采用现有高温炉提纯,热能除了加热物料外更多的是在加热炉体,并被散发到环境中。
3、采用新技术工艺,石墨的纯度高(碳质量含量≥98.7%)。初始碳质量含量90% 、粒度100目的石墨,经过一次提纯后碳质量含量98.7% ;经过第二次提纯碳质量含量99.5% 经过第三次提纯碳质量含量99.9%;如再经过几次循环石墨提纯到碳质量含量99.99%。
资料中详细描述石墨提纯的方法及其装置,其能耗远低于现行高温提纯法。石墨的纯度高,装置简单。
(三)天然隐晶质石墨(矿)剥离提纯方法
天然隐晶质石墨是我国的优势矿产资源之一,主要用于铸造、石墨电极、电池碳棒、耐火材料、铅笔和增碳剂等方面。隐晶质石墨晶体极小,石墨颗粒嵌于粘土中,很难分离。由于隐晶质石墨原矿品位高(一般含碳60%-80%),部分可达95%,平均粒径。.01-0.1μm,用肉眼很难辨别,故称隐晶质石墨,俗称土状石墨。与鳞片石墨相比,土状石墨碳含量高,灰分多,晶粒小,提纯技术难度大,使其应用范围受到极大限制。在我国,通常都是将开采出来的石墨矿石经过简单子选后,直接粉碎成产品出售。因此天然隐晶质石墨资源得不到充分的利用,甚至盲目出口,造成资源的浪费。鉴于天然隐晶质石墨的技术含量和附加值极低,而我国市场需要的高纯超细石墨则多数依赖进口,开展天然隐晶质石墨的提纯新方法尤为紧迫。
据恒志信网消息:湖南大学最新研制成功天然隐晶质石墨的提纯新方法,解决了现有技术中天然石墨矿,特别是隐晶质石墨提纯技术难度大、成本高、污染大、资源浪费严重的问题,适用于不同品味、不同矿质的天然石墨的提纯,且成本低,环境污染小,低能耗,简单易行,具有广泛的应用前景。
天然隐晶质石墨的提纯新方法具有如下优点:
1、新技术所采用的插层剂原料价格低,可循环使用或回收利用。
2、新技术对石墨结构无明显破坏,也不会产生明显缺陷,对大尺寸鳞片石墨具有保护作用。
3、新技术所生产的产品多元化(高碳石墨、高纯石墨、石墨烯和石墨烯纳米片) ,可根据市场需求调整产品结构。
4、新技术可在现有石墨浮边生产线上增添一定工艺设备进行实施,工艺简单,设备要求低,条件温和,成本低。
5、新技术不使用酸和碱,污染物产生少,对环境友好。
6、新技术适用于不同的固定碳含量的天然石墨矿,也可用于与辉钼矿的剥离提纯。
技术指标:原料:高碳隐晶质石墨粉(固定碳含量为43.2% 200目)
成品:高纯石墨(碳含量99.95% ),石墨回收率72% 。
【资料描述】
资料中详细描述了天然隐晶质石墨的提纯新方法、矿浆液调制方法、超声剥离的矿浆液、浮选、提纯等等步骤、以及生产实施例等等。
纯度≥99.999% 天然石墨高温提纯新技术
【石墨高温提纯技术背景】
石墨作为工业原料,尤其在一些特殊行业以及原子能工业、汽车工业、航天技术、生物技术等高新技术工业,不但对石墨的碳含量要求极高,同时也要求在石墨的成分中不能含有过多的微量元素,必须是99.9%以上的高纯度石墨,然而现在一般的天然石墨含碳量均无法满足这些行业对高纯度石墨的要求,目前对天然石墨采取的提纯法仍是利用石墨的耐高温的性能,从而使用高温电热法提高石墨纯度,由于此工艺复杂,需要建设大型电炉,电力资源浪费严重,同时需要不断通入惰性气体,造成成本高昂。尤其重要一点,是当石墨纯度达到99.93%时,己达到极限,无法使石墨的固定碳含量继续提高。目前对于氯气提纯尚未形成工业化生产。
现有技术存在工艺复杂、对原料的颗粒选择过大等缺点。国内外有采用高温提纯天然鳞片石墨,即将天然石墨装入己石墨化过的石墨士甘塌内进行石墨化提纯,利用石墨士甘锅具有良好的导电、导热以及耐高温特性,石墨灰粉2700℃度以上高温气化逸出,该方法能将纯度提高至99.99% 以上,但高温石墨纯化存在纯化时间长、工艺流程复杂、要求较高的温度同时严重浪费电力资源,然而化学提纯石墨的方法由于工艺落后,对于小颗粒的石墨不能较好的回收,对环境造成污染,并且纯度亦不能满足市场对产品的需求。
【高纯度天然石墨的提纯新方法 研制成功】
据恒志信网消息:针对上述现有技术存在的问题中。国内新研制成功一种纯度高、工艺简单、节省电力资源、利于石墨回收的高纯度天然石墨的提纯方法。是采用高温提纯石墨的方法,经过高温反应、化学提纯、洗涤、脱水后获得高纯度的石墨,利用氧化剂、络合剂与天然石墨进行反应,去除原料中杂质,得到微量元素含量低,性能稳定的石墨。新工艺对含碳量>60%的石墨原料进行纯化,得到纯度大于99.9991%,灰粉<1PPM,微量元素<0.5PPM的石墨,具有工艺简单,易于操作,生产效率高,耗电量低,不需要大型的加工设备,节约生产成本。
【新技术优点】
在石墨提纯工艺中均采用化学提纯或氧化提纯工艺,对于6000目以上的天然石墨则提纯的纯度很难达到99.9以上。
1、新提纯工艺利用氧化剂和络合剂与天然石墨原料进行化学反应,去除原料中Si02 、A1203 、MgO 、CaO 、P205、CuO 等杂质,从而生产出微量元素含量低,性能稳定的产品。而现有国内石墨提纯工艺中均采用化学提纯或氧化提纯工艺,对于6000目以上的天然石墨则提纯的纯度很难达到99.9以上。
2、目前国内大多在提纯过程中采用自来水用于石墨的提纯工艺中,由于一般的水质中均含有Ca2+、Mg2+、CL-、Si2+等离子物质,不利于去除石墨中本身所含有的Si02 、A1203 、MgO 、CaO 、P205 、CuO等杂质,新技术方案的工艺中采用经过离子交换树脂处理过的不含Ca2+、Mg2+、CL-、Si2+等杂质离子的纯水,更好的去除石墨中所含有的Ca2+、Mg2+、CL-、Si2+ 等杂质离子,同时可以使石墨中的pH 值达到6.4-6.9 。从而得到纯度高达99.999% 以上,灰粉<1PPM,微量元素<0.5PPM的石墨。
3、新技术方案工艺中将反应釜内的温度加热至85-90℃,可以是石墨与所加入的氢氟酸、盐酸、硝酸和乙二胺四乙酸与石墨中的所含的Ca2+、Mg2+、CL-、Si2+等杂质离子能够进行充分的化学反应,通过洗涤、脱水后,去除石墨中含有的Si02 、A1203 、MgO 、CaO 、P205、CuO等杂质,新技术方案中所选用的温度范围,并按照所述的温度范围进行提纯,能够使提纯达到最佳效果。络合剂具有分散、悬浮作用和很强的络合能力,在较小用量甚至极小用量就能达到需要的络合程度,络合剂还能有Ca2+、Mg2+等金属离子发生络合,形成金属络合物,从而达到去除金属离子的目的。
4、新技术方案工艺中加入的络合剂能是络合剂与石墨中的Ca2+、Mg2+等离子发生络合,形成金属络合物,通过洗涤、脱水去除石墨中含有的Si02 、A1203 、MgO 、CaO 、P205、CuO等杂质,技术方案选用合适的络合剂,并按照所述的比例加入进行提纯够进一步提高纯化的效果.
5、新技术工艺可对粒度为100-10000目,含碳量>60% 的石墨原料进行纯化,得到纯度为99.999% 的石墨成品,具有工艺简单,易于操作,反应时间短,生产效率高,耗电量低,在提纯过程中不需要大型的加工设备,节约生产成本。所得产品可应用于电子工业、国防尖端工业、化学分析工业、核工业、航天工业等高科技领域。
【高纯度天然石墨的提纯方法】部分摘要
提纯步骤为:
步骤一、取含碳量>60% 的石墨400公斤,放入反应釜Ⅰ内,按石墨的重量百分比依次加入30公斤乙二胺四乙酸、50公斤氢氟酸(浓度40%)、2公斤硝酸(浓度98%)。盐酸(浓度30%),后加入100L水,开机搅拌,转速200转/分钟,搅拌时间20分钟;
步骤二、升温反应,开启反应釜上温控装置,使反应釜内的温度升至85℃,反应4小时,反应过程中每隔50分钟搅拌一次,每次搅拌时间3分钟,搅拌速度200转/分钟,反应完成后,再静置3小时,静置完成后排出反应釜内尾气,制得混合料浆A;
步骤三、将混合料浆A 置入冷却塔Ⅱ内,向冷却塔Ⅱ内注入重量为混合料浆A两倍量的纯水,形成混合料浆A-2,边注水边搅拌,搅拌速度200转/分钟,搅拌至冷却塔II内的温度降至35℃止,完成降温后,打开冷却塔II 的放料阀,将混合料浆A-2 置入洗涤器Ⅲ内;
步骤四、将混合料浆A-2置入洗涤器Ⅲ中后,向洗涤器Ⅲ中注入纯水,边注水边洗涤,洗涤器Ⅲ的洗涤转速500转/分钟,洗涤至混合料浆A-2 的pH值呈6.4止,后将洗涤器III的转速设置为1000转/分钟,进行离心脱水,脱水至混合料浆A-2的含水量为20%止,停止脱水,制得混合料浆B;
步骤五、混合料浆B 重新放入反应釜Ⅰ内,按石墨重量百分比加入80公斤硫酸(浓度98%)、40公斤氢氟酸(浓度40%),然后加入纯水100L,搅拌20分钟,搅拌速度为200转/分钟;
步骤六、第二次升温反应,开启反应釜Ⅰ的温控装置,使反应釜Ⅰ内的温度升至85℃,反应2小时,反应过程中每隔1小时进行一次搅拌,每次搅拌时间3分钟,每次搅拌速度为200转/分钟,反应结束后,关闭电源,打开反应釜I 上的尾气排放阀,将反应釜I内的废气排出,制得混合料浆C;
步骤七、 步骤八、步骤九、步骤十、步骤十一、步骤十二
...............略 详细步骤请见本资料专集
步骤十三、将脱水后的混合料浆H 送至烘干设备上烘干,烘干温度为150-350 ℃,烘干后的含水量<0.1% ,碳含量为99.9991% -99.9995%,制得产品;
【资料描述】
资料中详细描述了高纯度天然石墨的提纯技术的制备方法、现有技术所存在的问题,性能和优点、实施例等等。
北京恒志信科技发展有限公司
我们的优势
国际新技术资料网拥有一支工作态度认真、业务基础扎实、团结协作意识强、专业技术水平过硬的员工队伍。我们以质量、信誉、完善的售后服务为准则,以优质的服务、雄厚的技术力量、先进的情报手段服务于广大客户。公司和自2000年成立以来,与有关科研单位、报社、信息中心共同合作为近万家企业单位、科研院校提供了有效的专题资料服务,得到了广大的企业家、科研工作者的好评。
国际新技术资料网由北京恒志信科技发展有限责任公司组建,是专门致力于企业经济信息、科技信息开发、加工整理、市场调查和信息传播的专业化网站,网站发展宗旨是:致力于我国信息产业的建设,及时向企业、科研部门提供最新的国际最领先技术的科技信息情报,有效服务于企业新产品开发、可行性论证和推广。
我们的业务
网站主要提供包括美国、日本、韩国、欧洲各国的专利技术资料、世界排名企业最新技术情报资料收集整理、数据加工、资料翻译,接受企业、科研院所委托专题情报服务。网站主要栏目包括世界科技发展热点的各类先进的新材料、石油助剂、化工助剂、建筑涂料,粘合剂 肥料配方,金刚石砂轮,金刚石锯片,磁材,金属表面处理,水处理及水处理剂等新技术工艺配方。国际新技术资料网 电话:13141225688
Copyright © 2010-2030恒志信网 京ICP备20014911号