高性能膨胀石墨、可膨胀石墨制备技术工艺配方资料精选

国际新技术资料网 创新科技之路
New Technology Of High Purity Graphite
国际新技术资料网LOGO
国际新技术资料网最新推出
新版说
各位读者:大家好!

       自从我公司2000年推出每年一期的石墨新技术系列列新技术汇编以来,深受广大企业的欢迎,在此,我们衷心地感谢致力于创新的新老客户多年来对我们产品质量和服务的认同,由衷地祝愿大家工作顺利!

       石墨产业未来市场前景十分广阔。传统应用领域对石墨消费拉动、新兴领域拓展是石墨产品未来市场的增长点。耐火材料行业是石墨消费的重要领域,镁碳砖对石墨的需求量占我国石墨消费量的近1/3,电动汽车锂电池负极材料,钢铁行业的持续稳定发展将促进石墨产业持续稳定增长。随着高新技术的发展、新材料产业将成为石墨产业新的增长点,高性能石墨导电材料、密封材料、环保材料、热交换材料、石墨烯等新兴材料以及制品产业将会得到快速发展。

       石墨产品需求结构将不断升级,球型石墨、柔性石墨、石墨电极、核石墨等加工产品将成为新的市场热点;利用具有自主知识产权的创新性技术,研究开发优质石墨新材料、广泛应用于能源、环保、国防等领域。未来产品需求专业化程度不断加强,满足下游领域对高性能、专业化石墨材料制品需求将成为发展主流,由石墨原材料向深加工加工及其制品方向发展趋势明显,同时,大力发展节能环保、新能源、生物、高端装备制造、新材料、新能源汽车等战略新兴产业,从而带动石墨产业快速发展。

       本期所介绍的资料,系统全面地收集了到2023年膨胀石墨制备制造最新技术,包括:优秀的专利新产品,新配方、新产品生产工艺的全文资料。其中有许多优秀的新技术在实际应用巨大的经济效益和社会效益,这些优秀的新产品的生产工艺、技术配方非常值得我们去学习和借鉴。
       全国订购热线:13141225688 在线订购!

2024新版《高性能膨胀石墨、可膨胀石墨制造工艺配方精选汇编》

<a target="_blank" href="http://wpa.qq.com/msgrd?v=3&uin=&site=qq&menu=yes"><img border="0" src="http://wpa.qq.com/pa?p=2::51" alt="点击这里给我发消息" title="点击这里给我发消息"/></a>
2025新版《粘接钕铁硼制造工艺配方精选汇编》

2025新版《粘接钕铁硼制造工艺配方精选汇编》

0.00
0.00
数量:
立即购买
加入购物车
  

1    一种柔性粘结钕铁硼磁体的制备方法及其制品和应用 

      一种耐高温高磁性的永磁材料,且所制备得到的耐高温柔性粘结钕铁硼磁铁应用于全向性的兰姆波磁致伸缩传感器,所述的全向性的兰姆波磁致伸缩传感器的中心频率与设计的理论中心频率340kHz基本吻合。


2    粘结钕铁硼-铁氧体永磁体及其制备方法和应用

      步骤:将铁氧体磁粉、硅烷偶联剂以及第一粘结剂混合,经造粒得到表面改性铁氧体磁粉;将所述表面改性铁氧体磁粉与钕铁硼磁粉、第二粘结剂混合,经造粒得到混合磁粉,其中,所述表面改性铁氧体磁粉与所述钕铁硼磁粉的质量比为1:99‑1:9;将所述混合磁粉压制成型,得到成型毛坯,将所述成型毛坯进行热固化处理,得到粘结钕铁硼‑铁氧体永磁体。通过提供的制备方法可以使粘结钕铁硼‑铁氧体永磁体在保证粘结钕铁硼磁体磁性能、力学性能以及抗腐蚀性能的基础上,显著改善高温不可逆退磁特性,并降低原料成本。


3    一种新型粘结钕铁硼磁体的制备方法 

      步骤,首先在保护性气氛下,将原料进行熔炼后,然后在保护性气氛下经过冷却后,得到甩带片;然后将上述步骤得到的甩带片经氢破碎后,得到粗粉,再经过气流磨进行磨粉后,得到细粉;再将上述步骤得到的细粉、低熔点金属和/或低熔点合金细粉和有机润滑剂进行混合后,得到混合粉体;最后将上述步骤得到的混合粉体经过取向压制成型和烧结后,得到粘结钕铁硼磁体。提供的制备方法,提高了粘结钕铁硼的磁性能、力学性能及可用温度,而且本产品可以进行热处理,性能更高。同时本发明还能够避免NdFeB主相晶粒长大,更加有利于后续产品进行扩散等后续工艺。


4    一种粘接钕铁硼强磁铁的制备方法及制备装置

      解决了现有磁粉制备时存在材料大量损失的问题,包括超声波发生器和安装于超声波发生器侧端的工作架,工作架的上端安装有容器杯,且工作架的后端安装有伸缩架,通过搅拌机构和调节机构的配合,在超声波发生器对磁粉和粘接剂混料时,将电机启动,电机通过固定架和限位盘使搅拌轴高速转动,同时,使用者将摆动架使缺齿锥齿轮向下移动,便可将传动件触动,传动件便可活动杆一和活动杆二展开,使搅拌轴对混合物充分搅拌,在搅拌完成后,使用者通过刮离件将搅拌轴表面粘接的材料刮离,降低材料的损失。


5    一种钕铁硼各向异性粘结磁粉的制备方法

      如下:步骤一、将原料投入到烧结炉的内部进行烧结,得到钕铁硼各向异性烧结磁体;步骤二、将步骤一中得到的块状磁体放入到粉碎机箱上的进料斗的内部进行预粉碎,然后通过粉碎机箱内部的粉碎刀进行粉碎,粉碎后得到磁体粉末;步骤三、将步骤二中的粉末进行稀土合金RTM的渗透和扩散处理;步骤四、将步骤三中的粉末与添加剂进行混合后,便可得到钕铁硼各向异性粘结磁粉。本发明涉及一种钕铁硼各向异性粘结磁粉的制备方法,具有减少粉碎时间和充分粉碎的特点。


6    一种粘结钕铁硼磁体表面喷涂方法 

      该方法包括以下步骤:一、设备调试:启动喷涂设备中的电加热板对滚桶进行加热到一定温度,同时启动驱动电机带动滚桶转动;二、材料放置:将经过预处理的粘结钕铁硼磁体与摩擦物按一定体积比倒入加热转动后的滚桶内;三、喷漆安装:将滚涂漆压入喷枪;四、产品测量:产品喷涂期间,每隔一段时间用长勺取出滚桶内进行喷漆的粘结钕铁硼磁体进行测量粘结钕铁硼磁体膜厚;通过滚桶的方式对钕铁硼磁体表面进行涂抹,相比较于传统的空气喷涂法,该喷涂方法不用移动喷枪,通过滚桶的转动,带动磁体滚动来获得均匀的涂层,提高涂层涂抹的均匀性及磁体的耐腐蚀性能。


7    一种多片粘胶钕铁硼磁铁制备工艺

      通过大片整体粘接,控制不同粘接层粘接前厚度,经过多线切割分切成单一组件,最终磨削上下面/成型面,通过一次粘接可以制成至少五个组件,节约了粘接耗费人工,通过设计毛坯尺寸提高材料利用率并在分切粘接片时将中间片加工到尺寸,通过计算上下端面两片加粘接缝厚度预留0.2mm的工艺磨量,确保既能控制了总高尺寸也能确保单片间厚度差异满足设计要求,均衡单片间的磁通差异小于1.5%。


8    低热减磁率粘结钕铁硼磁体及其制备方法

      钕铁硼磁体由钕铁硼磁粉制成,钕铁硼磁体具有低热减磁率,钕铁硼磁体的制备方法包括以下步骤:步骤S1,制粉,将钕铁硼磁粉与粘接剂混合制成磁胶粉,步骤S2,成型,磁胶粉通过自动压机成型制成压坯,步骤S3,固化,压坯通过固化设备进行固化使产品达到一定机械强度,步骤S4,表面处理,对压坯表面进行防腐蚀处理以提高磁体的抗氧化能力,步骤S5,充磁,通过充磁机、充磁线圈及专用夹具对磁体进行充磁,步骤S6,热处理,对充磁后的磁体进行低温热处理,热处理的温度范围为80℃‑120℃,热处理的时间为0.5h‑4h,步骤S7,包装出货,对热处理后的磁体进行检验,并将检验合格的磁体按要求包装出货。


9    一种烧结钕铁硼晶界扩散防粘涂层及其应用

      原料制备而成:5‑8份硫化钼粉末、10‑20份环氧树脂、30‑50份有机溶剂。通过本发明的防粘涂层,喷涂到烧结钕铁硼磁钢表面,能较好地避免产品之间的粘连,实现全程操作自动化,省时省力,提高生产效率,且涂层简单易用,适合推广使用。


10    一种钕铁硼各向异性粘结磁粉的制备方法 

        解决现有钕铁硼各向异性粘结磁体磁性能较低的问题。一种钕铁硼各向异性粘结磁粉的制备方法,包括如下步骤:1)制备钕铁硼各向异性烧结磁体;2)将钕铁硼各向异性烧结磁体破碎成粉末;3)对粉末进行稀土合金RTM的渗透和扩散处理,得到钕铁硼各向异性粘结磁粉;其中RT是Nd、Pr、Dy、Tb、Ho、Ce、Y的一种或多种任意比例的组合,M是Al、Cu、Ga、Zn的一种或多种任意比例的组合。所述磁粉制得的粘结磁体,矫顽力可达到1433KA/m以上,并且有较高的剩磁9.7KGs;简化了工艺难度,适合大批量工业化生产。


11    一种抗震耐腐蚀型粘结钕铁硼磁体及其制备方法

        用于解决现有粘结钕铁硼磁体生产效率低、耐腐蚀型抗震防摔效果差的问题。包括底座壳体和上盖板,底座壳体内部设有放置区,放置区内部设有磁体,放置区的内外侧均设有外边槽和内边槽,磁体与外边槽及内边槽之间分别形成卡接环形区,上盖板的下端设有外插环和内插环,外插环和内插环插合在对应的卡接环形区内部,磁体包括磁体主体,磁体主体的表面由内向外依次设有电镀磷层、耐腐蚀涂层和气相沉积膜层;原料配比科学合理,强度高,磁性好,电镀磷层、耐腐蚀涂层和气相沉积膜层包覆在磁体主体表面,耐腐蚀;底座壳体和上盖板配合包裹磁体,抗摔抗震。


12    一种3D打印制备粘结钕铁硼磁体的方法

        采用液态光敏树脂制备钕铁硼的打印浆料,通过超声振动控制系统实现高固含量浆料的打印,从而确保浆料的成形性、打印磁体的精度和高致密度,并采用取向充磁系统有选择性地实现磁体的打印取向成型,最终得到复杂形状的高性能粘结钕铁硼零件。采用液态光敏树脂制备3D打印的钕铁硼料浆,实现光固化快速成型。制得的粘结钕铁硼磁体具有良好的磁性能和高致密度,且可实现各种复杂形状的近净成型,省去了磁体复杂零件的切削加工,大大降低了生产成本且节约了资源。


13    一种粘结钕铁硼磁体及制备方法 

        首先将粘接剂粉和磁粉混合,然后将溶剂均匀雾化喷淋在磁粉和粘结剂颗粒上;在搅拌的过程中溶剂中的偶联剂先将磁粉表面改性,随着粘结剂的溶解粘结剂均匀涂抹在磁粉表面,用这种方法制作的胶粉粘结剂与磁粉表面分散均匀,磁粉与磁粉之间、磁粉和粘结剂之间结合力强,造粒后的胶粉颗粒一致性好可以大大提高粉末流动性和强度的一致性。由于粘接剂不用提前溶解于溶剂中,大大提高了作业效率和各种成分的配比精度。


14    一种复合添加锌和钆的钕铁硼粘结磁粉及其制备方法  

        该磁粉中各元素组成为:Nd10~11%、Gd1.0~2.6%、B6~7%、Zn0.2~0.5%,余量为Fe。锌和钆复合添加,能够降低磁体的温度系数,提高α‑Fe晶化温度,使快淬NdFeB合金晶化时α‑Fe和Nd2Fe14B同时析出,避免α‑Fe先析出和长大,细化了晶粒,增强了晶粒之间的交换耦合作用,有效的钉扎位置增多,可有效地提高粘结磁粉的Hcj和Hk;并且锌和钆协同作用,内外结合,提升了所制备粘结磁粉的抗腐蚀性。方法限定熔炼的温度、真空度、淬速、晶化处理的温度等参数,进一步提升磁粉综合性能。


15    一种提高粘结钕铁硼磁体性能的表面处理方法 

        包括前处理、电泳、多次喷漆工和多次固化工艺,该方法中,电泳后,电泳涂层渗透到粘结钕铁硼磁体微孔和预处理后的磷化层中形成了第一层保护层,第一次喷漆处理和第二次喷漆处理又在电泳涂层上形成第二层保护层,从而有效的隔断了电泳涂层烘干过程中气体挥发所留下的毛细孔,第三次喷漆处理和第四次喷漆处理后形成第三层保护层,第三层保护层又一次隔断了第一次喷漆处理和第二次喷漆处理形成的漆层烘干过程中气体挥发所形成的毛细孔,并且第一层保护层、第二层保护层和第三层保护层牢固结合为一体;优点是具有防渗透、抗湿气、防氧化、耐高温高湿的效果。


16    一种模压用各向异性粘结钕铁硼磁粉用粘结剂

        由双酚A树脂、聚四氟乙烯、硅烷偶联剂组成;其按质量分数计为:磁粉97%,双酚A树脂1-2%,聚四氟乙烯0.5-1%,硅烷偶联剂0.2-0.5%。其使用方法:先将硅烷偶联剂用丙酮溶剂溶解加入磁粉中对磁粉表面进行改性预处理;然后添加双酚A型和聚四氟乙烯粘接剂的丙酮混合溶液进行搅拌造粒。采用上述技术方案粘结剂具有低的熔融温度,并且在熔融温度下有低的粘度,磁粉和粘结剂具有良好的粘结性能、磁取向度好。


17    一种含有滑石粉的具有高磁性的钕铁硼粘结永磁体

        原料制得:钕铁硼磁粉110-120、苯二酚0.2-0.4、二硫化钼0.3-0.5、石墨烯1-3、硅钙矿渣3-5,电木粉1-3、滑石粉2-3、硅钙矿渣2-5,植物油1-2、氰尿酸三聚氰胺0.2-0.4、环氧树脂1-3、松香1-2、乙撑基双硬脂酰胺0.5-0.8、丙酮1-2。


18    一种粘结钕铁硼永磁体的制备方法

        步骤:(1)配料,准备以下原料:粘结钕铁硼磁粉、锌粉、环氧树脂胶、固化剂、润滑剂;(2)制备;(3)固化。本发明之粘结钕铁硼永磁体,同现有的磁体相比,由于在磁粉-树脂体系中添加了合适比例的锌粉,不仅能保证磁体的机械强度及性能要求,又能降低磁体的成本。


19    一种粘结钕铁硼永磁材料及其制备设备  

        以重量百分比记为,基本表达式为RExFe100-x-y-z-oByMzNo,其中,RE为钕元素,Fe为铁元素,B为硼元素,M为Co元素,N为Ti、Cr、Mo、Nb、Zr等元素中的一种;x为22.0~32.4,y为4.0~5.85,z为3.96~6.01,o为0.3~4.82,通过添加过渡金属元素Co、Nb(或Zr)等起到协同改善钕铁硼磁粉稳定性、晶粒大小及內禀矫顽力大小。粘结钕铁硼稀土永磁材料,具有高内禀矫顽力、高磁能积、高剩磁及易充磁的优点。


20    用原位聚合粘结剂制备钕铁硼-铁氧体层叠复合粘结磁体的方法 

        该方法将钕铁硼磁粉、铁氧体磁粉加入聚合物单体溶液中,利用原位聚合技术使聚合物粘结剂在磁粉表面原位生成,在反应结束后利用压片成型方法制成粘结钕铁硼磁片和粘结铁氧体磁片;将粘结钕铁硼磁片和粘结铁氧体磁片层叠后模压成型,制成钕铁硼-铁氧体层叠复合粘结磁体。层叠复合方法无需进行密度差别大的钕铁硼磁粉与铁氧体磁粉的混合,磁体组织均匀、性能一致性好,可利用改变钕铁硼磁片和铁氧体磁片叠层数量改变磁体的性能,简化了制造工艺,利用原位聚合粘结剂可以避免使用粉状聚合物,降低了生产成本,是制备高性能钕铁硼-铁氧体混合粘结磁体的经济途径。


21    一种弹性粘结型钕铁硼磁性材料及其制造方法 

        配料:原料由下述组分组成:10-95重量份的钕铁硼磁粉;1-50重量份的铁氧体磁粉,其选自锶铁氧体和/或钡铁氧体;2-20重量份的粘结剂,其选自CPE塑料、PE塑料,NBR橡胶中的至少一种;0.1-3重量份的偶联剂,0.2-3重量份的增塑剂;以及0.1-3重量份的粘合剂,其中配料时,先将钕铁硼磁粉经过40目或更大目数的筛选,接着将所述筛选后的钕铁硼磁粉与偶联剂共混,使偶联剂完全浸渍到金属磁粉中,然后再加入其他原料;以及将配好的粉料经过混合物炼制、压延、热处理、成型,即得弹性粘结型钕铁硼磁性材料。


22    一种刚性各向异性粘结钕铁硼永磁体  

        包括:磁粉90~96wt%,热塑性树脂2~8wt%,抗氧化剂0.3~2wt%,润滑剂0.2~0.5wt%,增塑剂0~0.5wt%,偶联剂为0~1wt%,其中所述的磁粉为各向异性钕铁硼永磁粉,一维线度尺寸为200~400nm,厚度为30~50nm。将上述成分按照一定的比例混合均匀,经同向啮合双螺杆挤出机造粒,将颗粒料加入到单螺杆挤出机中,利用挤出机机械取向后制得不同规格的磁体。所述的各向异性粘结钕铁硼永磁体,在不利用外加磁场的情况下,磁体中磁粉的取向度为60~80%,磁能积可以达到13~20MGOe,充分满足新的应用对高性能粘结稀土永磁体的需要。


23    一种粘结钕铁硼磁体的表面防腐处理方法 

        步骤:步骤1:将粘结钕铁硼磁体放入到去离子水中,清洗表面粉尘及杂物;步骤2:将步骤1处理过的粘结钕铁硼磁体放入到化学溶液中浸渍;步骤3:将步骤2处理过的粘结钕铁硼磁体在去离子水中清洗,然后自然干燥或烘干,在粘结钕铁硼磁体的表面生成一层结晶膜。通过化学反应在磁体表面生成一层致密的结晶膜,该结晶膜具有良好的耐腐蚀性能,同时具有良好的硬度及耐热性,可以起到防锈,耐磨及减磨的作用。


24    金属锡粘结钕铁硼稀土永磁材料的方法

        配制钝化还原反应所需的K#-[2]Cr#-[2]O#-[7]水溶液、盐酸水溶液、NaOH水溶液和NaHSO#-[3]水溶液,配制自制分散剂溶液,将钕铁硼磁粉钝化还原预处理,在经包裹处理的92~98重量百分比钕铁硼磁粉和2~8重量百分比金属锡粉的混合料中加入添加剂,添加剂配比为1~3重量百分比的松香,97~99重量百分比无水酒精,并混合均匀。采用金属锡粉和经钝化还原方法包裹的钕铁硼磁粉来制作金属锡粘结钕铁硼永磁材料,极大提高磁粉的高温抗氧化性能,使其满足金属锡粘结工艺的实施温度,用自制分散剂解决了金属锡粘结剂在磁粉中分布不均匀的问题,得到性能优良的钕铁硼粘结磁体。


25    一种提高粘结钕铁硼永磁体机械强度的化学镀镍方法 

        主要工艺过程由化学镀铜表面封孔、电镀镍和化学镀镍三部分组成。主镀液含有硫酸镍、次磷酸钠、乳酸和丙酸。采用这种复合化学镀镍的方法,有效地提高了粘结钕铁硼永磁体的特征机械强度,拓展了粘结钕铁硼永磁体的应用领域。


26    一种粘结钕铁硼永磁材料的设备 

        实现了本粘结钕铁硼永磁材料的设备能够进行研磨作业的同时,具备对作业过程中所产生的烟尘进行过滤净化和回收利用的功能,降低了环境污染和原材料的浪费。


27    一种用于钕铁硼粘结成型的粉料混合方法   

        该方法中通过选取辅料与纯磁粉进行混配后,以晾干、烘烤等方式完成混粉,得到的磁粉性能便于掌控,可有效降低成分,解决了传统工艺中产品制作质量不良,能够管控产品不良率降低10‑15%。


28    一种粘结钕铁硼磁体生产用原料粉碎装置   

        用于解决现有的钕铁硼磁体原料粉碎装置,下料过快容易导致原料堆积,影响生产效率的技术问题。包括机体,机体内部设有伸缩组件,且伸缩组件包括两个挤压块,机体开设有移动槽,移动槽内设置有滑杆,两个滑杆之间固定有梯形方块,机体的侧端设有传动组件,机体内部设置有两个粉碎辊,机体的侧壁安装有驱动电机,机体开设有出料口,出料口连接有回收槽;本粘结钕铁硼磁体生产用原料粉碎装置能够调节钕铁硼磁体生产用原料的下料的速度并保持下料速度的稳定,保证装置运行的流畅性,提高生产效率;能够对卡住的钕铁硼磁体原料进行再次粉碎,提高粉碎效果。


29    一种粘结钕铁硼磁体生产用表面喷涂装置    

        可以使钕铁硼磁体始终保持转动,并使扇形喷嘴的位置不断变化,提高喷涂的均匀程度;能够固定不同尺寸的钕铁硼磁体,且取放步骤简单,对钕铁硼磁体表面具有较好的保护效果;能够调节喷涂范围,能够对尺寸不同的钕铁硼磁体进行喷涂。


30    一种压制粘结钕铁硼磁体的制备方法  

        采用石墨粉取代硬脂酸锌做为润滑剂,通过钕铁硼磁粉和粘结剂溶液的两次混合工艺使成品母粉中含有超出正常使用量的环氧树脂,提高了钕铁硼磁粉和超量使用的粘结剂溶液的混合均匀性,最后通过固化工艺使粘结剂均匀溢出包裹在基体表面形成防护层;优点是避免了丙酮购买、保存和使用上的管控,降低了材料管理成本,避免了硬脂酸锌气化造成的磁体表面缺陷,省略了电镀或电泳等涂覆工艺,避免了电镀或电泳等涂覆工艺造成的环境污染,并避免了在电镀或电泳等涂覆工艺产生的废水和废气处理上进行额外投入,工艺过程简单,工艺成本较低。


31    一种不锈钢粉、钕铁硼磁粉复合的粘结磁体制备工艺  

        针对采用其它材料与钕铁硼磁粉复合时混合不均匀的问题,先对不锈钢粉和钕铁硼粉进行粒度调整使钕铁硼磁粉和不锈钢粉的粒径相似,再将W‑6C环氧树脂溶于丙酮中后,加入不锈钢粉与钕铁硼磁粉搅拌;接着将搅拌好的混合物烘干,加入滚动喷雾机中进行滚动喷雾后破碎过筛、压制成型并固化;最后在表面喷涂环氧树酯漆,烘干得产品。将不锈钢粉与钕铁硼磁粉按一定比例、相似粒度混合以获得复合磁粉,使磁性能满足特定要求,不锈钢粉容易获得与钕铁硼磁粉相匹配的粒度分布,可以改善混合的均匀性,使产品的磁性能和压溃强度一致性达到量产要求。


32    一种铁氧体、钕铁硼复合的粘结磁体制备工艺    

        步骤为:(1)将锶红铁氧体进行球磨、干燥后,与钕铁硼磁粉混合均匀,得混合料,锶红铁氧体料与钕铁硼磁粉的质量比控制在1:(1~9);(2)将W‑6C环氧树脂溶于丙酮中后,加入混合料搅拌均匀,烘干,W‑6C环氧树脂质量与混合料的质量比为(2~3):100;(3)将烘干的物料加入破碎振筛机中破碎过筛后,压制成磁环后在表面喷漆,烘干后即得产品。本发明工艺步骤简单,可操作性强,产品成本低,一致性与磁性能好,不易生锈。


33    一种粘结钕铁硼磁粉预处理工艺 

        磁粉破碎、配料、搅拌式混炼、烘干、滚动喷雾造粒、破碎过筛和混合等步骤,其中滚动喷雾造粒步骤中将经处理的磁粉加入到滚筒中滚动同时在磁粉上方进行喷雾处理。通过本发明中的工艺处理,可在不影响磁粉性能的前提下,改变磁粉的粒度分布和磁粉颗粒的形貌,提升磁粉的流动性和松装比,解决壁厚0.9mm及以下情况或高度40mm及以上情况下磁粉不能填入和填不均匀的问题,保证产品的尺寸精度及性能一致性。


34    各向异性钕铁硼辐射取向粘结磁体成型压机 

        包括支撑板、温度传感器、电动缸以及压杆,所述配电箱、控制装置、模数转换器、单片机以及开关均固定在支撑板左端面上,支撑板右端固定有连接板,连接板上端固定有电动缸,所述电动缸下端固定有压杆,压杆下端穿过连接板,并延伸至连接板下方,压杆下端固定有压板,压板下端固定有磁性板,磁性板右端固定有温度传感器,模数转换器、温度传感器以及单片机均与配电箱电性连接,配电箱与开关电性连接,开关与控制装置电性连接,所述温度传感器与模数转换器电性连接,成型效果好,安全性高,减震效果好,且结构简单,操作方便。


35    一种用于各向异性钕铁硼四极取向粘结磁体成型压机 

        包括电动机、四极取向线圈板、压板、侧板二、齿条、连接轴、齿轮以及减震垫,所述侧板一以及侧板二均固定在底座上端面上,所述支撑板固定在侧板一以及侧板二内端,所述支撑板上端固定有壳体,所述壳体左端固定有电动机,所述电动机的主轴右端固定有连接轴,所述连接轴右端穿过壳体,并延伸至壳体内部,所述连接轴上固定有齿轮,所述齿轮后端啮合有齿条,所述齿条下端依次穿过壳体以及支撑板,所述并延伸至支撑板下方,所述压杆下端固定有压板,所述压板下端固定有四极取向线圈板,所述底座上端固定有加热器,减震效果好,温控效果好,且结构简单,操作方便。


36    一种粘结钕铁硼磁体及快速固化制备方法 

        该粘结钕铁硼磁体中包含热固性环氧树脂粘结剂和纳米氧化铝粉组分;针对该粘结钕铁硼磁体,通过在磁粉配制过程中添加热固性环氧树脂粘结剂和微量纳米氧化铝粉来实现快速固化制备。提供的方案能够在不增加成本,不降低产品强度和质量的前提下,缩短产品固化时间,实现在保证产品尺寸一致性和强度的前提下提高粘结钕铁硼磁体的生产效率、降低生产成本;同时为固化工序和压制车间实现自动化流水线生产创造了有利条件,提高产品生产效率和市场竞争力。


37    一种柔性稀土粘结钕铁硼磁体的制备方法

        包括:将硅酸钠、羧甲基纤维素钠、碳酸钾、柠檬酸脂肪酸甘油酯、乙二胺聚氧乙烯聚氧丙烯嵌段式聚醚、硫酸钠、乙二胺四乙酸二钠、过碳酸钠、十二烷基醇聚氧乙烯醚硫酸钠和三甲基硅烷基氯化镁溶于去离子水中,加入钕铁硼合金粉超声波振荡,然后平铺在填充氢气的密封石墨炉内超声波处理,将石墨炉抽至真空,静置后得到钕铁硼磁粉;将聚芳醚腈酮、聚天冬氨酸、聚丙烯酰胺和聚乙二醇混合,然后加入钕铁硼磁粉,搅拌,置于双螺杆混炼机中进行挤出接枝,干燥、造粒,得到柔性稀土粘结钕铁硼磁体。实验结果表明,制备温度较低,且得到的柔性稀土粘结钕铁硼磁体的抗老化性能较好。


38    一种计算机CPU散热风扇用超薄粘结钕铁硼磁体及其制备方法 

        该超薄粘结钕铁硼磁体为圆环状,其表面具有一层抗腐蚀层;该超薄粘结钕铁硼磁体为圆环状,尺寸一次成形至最终成品的公差小于0.03mm。由此形成的超薄粘结钕铁硼磁体具有较强的抗腐蚀性,采用GB/T 18880公开的试验方法对其进行检测,根据检测结果可以得到,该具有抗腐蚀层超薄粘结钕铁硼磁体的耐湿热性和耐溶剂性良好,不腐蚀,能够满足有关方面的需要。


39    一种高性能粘结钕铁硼永磁材料的制备方法

        其特征在于通过气相沉积的方法在快淬钕铁硼粉的表面包覆低熔点金属或合金薄膜(熔点范围300-600℃),而后在该金属或合金熔点0.85-0.95倍的温度下真空热压成型,最终得到高性能粘结钕铁硼磁体。该低熔点金属或合金成份由R‑M,R‑N,R‑(M,N)或N‑N组成,熔点范围300-600℃,R为La,Ce,Pr,Nd,Gd,Tb,Dy,Ho中的一种及以上,M为Fe,Co,Ni中的一种及以上,N为Cu,Al,Ga,Zn,Sn,Ag中的一种及以上。该发明的优点是磁体强度高、磁性能高,且由于磁体导电性好,相较于传统的粘结钕铁硼磁体,更有利于磁体防腐蚀层的电泳处理。


40    一种各向异性粘结钕铁硼磁体表面涂覆方法  

        包括磁体表面预处理和电泳涂覆。表面预处理为先将磁体放入中性表面活性剂的槽液中进行超声波清洗去除磁体表面的油污;然后在电磁力研磨机中将磁体表面光整、退磁去除磁体表面吸附的磁粉和杂质;经以上处理的磁体进行喷淋清洗;再放入磷化液中进行磷化以提高磁体高耐湿热性能和耐盐雾性能,提高涂层与磁体间的结合力;最后对磁体表面进行超声波清洗将磁体表面的油污、残渣、残液等清洗干净防止预处理后表面存留的各种杂质离子带入电泳槽,是槽液成分受到破坏,影响涂层质量。采用上述技术方案获得的磁体电泳涂覆膜,外观、粘附力、耐腐蚀性等指标都较优异。


41    一种各向异性粘结钕铁硼磁粉造粒工艺 

        尤其是各向异性粘结钕铁硼磁粉生产造粒工艺。包括原辅料选型-粒度选配-粘接剂配制-粉末真空造粒-粒度筛选-润滑剂添加-粉末检测入库。采用上述技术方案获得的磁粉在各向异性粘结钕铁硼磁体取向成型过程中充填率、磁体取向度和磁能积等各项指标都较优异。


42    柔性粘结钕铁硼磁体及其制备工艺 

        具体步骤包括:配料:按配比精确称取原料,所述原料包括:快淬钕铁硼磁粉91.5%,橡胶7%,添加剂1.5%,上述百分比为质量百分比;密炼:将称取的原料放入密炼机进行密炼,通过压力、剪切力作用,实现橡胶、钕铁硼磁粉和其它添加剂的充分融合、包裹;破碎:将密炼后的大块物料破碎成直径1-5mm的颗粒状;挤出成型:70-100℃下挤出成型,并实现充磁。柔性粘结钕铁硼磁体,能够兼顾磁性能和机械性能,可广泛应用于计算机、电子器件、通讯、微电机、传感器、汽车和航空航天等工业领域和家用电器、儿童玩具等日常生活用品。


43    一种应力场取向各向异性可挠性粘结钕铁硼磁体及其制备方法

        应力场取向各向异性可挠性粘结钕铁硼磁体将MQIII磁体破碎后,经扁平化处理,有机硅树脂包覆处理以及与粘结剂,助剂通过混炼、开炼后,压延成一定厚度的磁体,其中磁体中各组分的含量为形状各向异性钕铁硼磁粉75~95%、粘结剂5~20%、其它助剂0~5%。本发明具有工艺简单,容易制备大尺寸、生产效率高的优点,而且兼顾了可挠性磁体的良好曲扰性,磁体可以卷绕在其厚度10倍的轴上不断,不开裂;磁体最高性能可达到110kJ/m3,甚至超过了各向同性的刚性模压磁体的性能,进一步扩大了可挠性磁体的应用领域。


44    高机械强度粘结钕铁硼永磁体及其制备方法 

        磁体中包含NdFeB磁粉,热固性树脂、固化剂、润滑剂,在磁粉-树脂体系中加入不锈钢粉。该磁体的制备方法是:将热固性环氧树脂、固化剂和树脂重量的1~4倍丙酮混合均匀,加入均匀混合的磁粉和不锈钢粉的混合物,利用混合机将上述磁粉、不锈钢粉的混合物和树脂混合均匀,烘干、筛分,再加入一定比例的润滑剂混合均匀,得到本发明的磁粉混合物,将磁粉混合物经过压缩成型机压制成圆环形状的磁体生坯并固化,即得到本发明所述的磁体。同现有磁体相比,磁体压环强度得到提高,有效减少薄壁圆环磁体在后续加工工序及运输过程中的断裂现象,降低了不必要的损耗。


45    粘结钕铁硼永磁体颗粒料制备方法

        首先将快淬钕铁硼永磁粉偶联处理,然后取经偶联处理后的钕铁硼磁粉85~95wt%、热塑性树脂2~14wt%、金属防氧化剂1~5wt%及其他加工添加剂0~2wt%在高速混合机进行充分混合,将混合均匀的磁粉混合物,利用同向啮合平行双螺杆混练机,同时充入保护性气体,在一定温度下混练,冷却后切割成颗粒料。本方法有效解决了常规高温混练过程中发生金属磁粉易氧化,磁粉矫顽力损失大的问题,有效提高了磁体的磁性能。


46    一种各向异性无粘结剂钕铁硼磁体的高速压制成形方法

        其步骤及工艺条件如下:(1)模壁润滑;(2)将磁粉填充于模具型腔,再放在磁场强度为1.0~1.5T,频率为0.02~0.1赫兹的脉冲磁场中取向,同时施加20~30MPa的压力预压;(3)将模具加热至130~150℃后高速压制成形,压制速度为10~17m/s。本发明实现了低成本短流程近净成形,工艺简单,实用性好,成本低;制得的钕铁硼磁体与粘结磁体相比其生坯密度提高了0.43~0.93g/cm3,剩磁提高了0.2~0.54T,最大磁能积提高了20~60kJ/m3,矫顽力Hcb提高了73~348kA/m,Hci提高了80~387kA/m。


47    粘结钕铁硼磁体真空浸渗厌氧胶的生产工艺及其用途 

        其生产工艺的主要步骤包括抽真空、真空浸渗、真空甩胶、皂水清洗、冷水清洗、催化固化、温水清洗、甩干烘干和干燥固化。本生产工艺适用于粘结钕铁硼磁体或钕铁硼-铜复合粘结磁体。其优点是:对粘结钕铁硼磁体机械强度的提高,效果显著。从根本上解决了粘结钕铁硼磁体在一些特殊应用方面机械强度低的问题。本发明的应用拓展了粘结钕铁硼磁体的应用领域。本工艺的优点是操作简单,浸渗效率高;能更有效地去除磁体表面残留过多的厌氧胶和水印,最大程度防止了磁体因清洗不充分而使胶液残留磁体表面情况的出现,使磁体表面更清洁。


48    一种粘结钕铁硼磁体及其制备方法  

        包含钕铁硼磁粉、热固性树脂、固化剂、促进剂、润滑剂,其特征是在粘结钕铁硼磁体中加入纳米二氧化硅作为增强剂,加入的重量含量为磁粉的0.01%-1.0%,将上述的热固性树脂、固化剂、促进剂、纳米二氧化硅、润滑剂及有机溶剂混合均匀,在惰性气体保护下,将混合均匀的树脂溶液与磁粉混合均匀,加热减压去除溶剂,制得含有纳米二氧化硅的磁粉-树脂混合物,通过压制成型、热固化处理,即可得到。具有有利的机械强度,且在磁性能、脱模性和尺寸精密性方面也很好。


49    一种钕铁硼各向异性粘结磁粉的上料设备   

        其主要针对现有的称粉装置在使用时由于料筒和第三闸门均为竖直设置,导致料筒中的钕铁硼磁粉在重力作用下容易堆压成块,容易造成上料堵塞的问题,提出如下技术方案:包括称粉箱,所述称粉箱上固定安装有固定架,所述固定架上固定连接有固定杆,所述固定杆一端固定安装有进料敞管,所述进料敞管下端连接有第一伸缩软管,所述第一伸缩软管下端连接有进料管,所述进料管底端连接有第二伸缩软管,所述第二伸缩软管上安装有气动蝶阀。本发明可防止钕铁硼磁粉在进料时产生堵塞,便于生产的连续进行,还能在堵塞时进行清理,进一确保了上料的顺利进行。


50    一种粘结钕铁硼磁体生产用成型装置    

        解决了现有砂模破碎速率较低导致磁铁生产速率较低的问题。本粘结钕铁硼磁体生产用成型装置,包括底座,底座顶端固定有箱体,箱体上固定有漏斗,底座顶端设置有移动组件,箱体两侧均开设有开口,移动组件的一端通过其中一个开口伸进箱体内,箱体另一侧固定连接有破碎箱,破碎箱顶端开设有滑槽,箱体顶端固定有第一电机,第一电机的输出轴端固定有圆盘,圆盘上固定有凸柱,凸柱转动连接有连接杆,连接杆的另一端穿过滑槽并固定有破碎锤。本实用新型具有对一次性砂模进行快速破碎,加快钕铁硼磁体的生产速率的优点。


51    一种粘结钕铁硼磁体生产用压制装置    

        用于解决现有粘结钕铁硼磁体的生产效率低的问题。包括底板和整平组件,整平组件包括支板,支板固定在底板的上方,支板的上方转动设置有转动盘,转动盘的下方固定有第一液压缸和电动推杆,第一液压缸的端部固定有上压板,电动推杆的端部固定有安装盒,安装盒的内部设置有第一震动马达,安装盒的下方固定有若干插入杆,支板的上方固定有安装架,安装架上固定有切换电机,切换电机的输出轴上固定在转动盘上,底板的上方设置有储料组件和出料组件;本实用新型通过整平组件和底板配合,可以自动对挤压套筒内部的原料进行整平,从而方便后续加工,提高了生产效率。


52    一种钕铁硼磁体粘结生产用配料混合装置  

        用于解决现有混合装置混合温度不能稳定调节的问题。包括混合罐,混合罐的外侧设有恒温水箱,恒温水箱的外侧设有四个圆周均布的支腿,安装板上设有带屏电控箱,安装板和恒温水箱之间设有加热组件,混合罐的上端可拆卸地设有盖体,盖体的上端中部设有安装座,安装座上设有混合机构,盖体的上端还依次设有若干配料管、进料管、观察窗、混合罐温感器、清洗接头、罐体排汽阀和压力表,清洗接头上设有清洗翻盖;本发明可保证低温和高温的混合反应温度恒定,满足不同种类的钕铁硼磁体粘结生产混合;保证内部压力温度,避免高温高压,更加安全;方便观察和清洗。


53    钕铁硼磁体组件的粘接方法 

        步骤:(1)提供N片钕铁硼磁体,并在第1~(N‑1)片钕铁硼磁体的表面形成绝缘层;其中,N为大于等于3的自然数;(2)在所述绝缘层上涂布粘接剂得到待粘接磁体;(3)在所述待粘接磁体中,将第1片钕铁硼磁体涂布有粘接剂的表面与第2片钕铁硼磁体未涂布粘接剂的表面叠加,以此类推,依次叠加,直至第(N‑1)片钕铁硼磁体;再将第N片钕铁硼磁体叠加在第(N‑1)片钕铁硼磁体涂布有粘接剂的表面,从而得到叠加磁体组;将所述叠加磁体组加压,并固化形成粘接层。本发明的方法可以改善绝缘粘接层的一致性。


54    一种防锈磨削液及其在粘结钕铁硼磁体中的应用  

        防锈磨削液按如下质量百分比的组分组成:油酸三乙醇胺硼酸酯4~6%,三乙醇胺0.6~1.2%,聚醚L640.6~1.2%,磷酸三钠0.6~0.8%,消泡剂0.1‑0.3%,防腐剂0.05~0.1%,余量为纯水。本发明采用的原料都是环保水性介质,可在自然环境下自然降解,对环境无污染。


55    静磁耦合高性能复合粘结钕铁硼磁体 

        矫顽力Hci在2k‑4kOe的粉末为10‑40重量份和矫顽力Hci在7k‑17kOe的粉末为60‑90重量份制备出的复合磁体,两种粉末矫顽力相差3k‑15kOe通过静磁耦合改善复合粘结磁体的性能。有益效果为:两种矫顽力高低悬殊的磁粉之间发生的磁性能相互作用的结果通配比形成静磁耦合,可以加入尼龙12增大静磁耦合效果,静磁耦合能大幅度改善复合粘结磁体的性能。

购买理由

高密度高强度石墨国内外研发现状

    美国POCO Graphite Inc 利用超细粉石墨材料在2500℃以上,压力作用下的蠕变特性,成功开发再结晶石墨。再结晶石墨是在高温高压下使多晶石墨晶粒长大并走向排列而得到的高密度材料,石墨体内的缺陷(砂眼、裂纹等)消失,体积密度可达到1. 85-2.15g/cm3


   日本住友金属公司用MCMB 成功研制体积密度1.98-2.00g/cm3高密度各向同性石墨。日本无机材料研究所在沥青的苯不溶物添加油和1, 2一苯并菲等高沸点有机化合物,加热至350-600,制成粒径>1-100 的MCVIB 在4MPa的成型压力下成型,石墨化后得到高密度各向同性石墨。


  揭斐川电气公司用B阶缩合稠芳多核芳烃(COPNA)树脂为原料,在200 模压成型,固化后,再在400-500的条件下和非氧化性气氛中热压处理,经过后续工作得到高石墨化、导热性和导电性俱佳的高强高密(1. 85g/cm3) 石墨材料。


与发达国家相比还有很大差距

      然而,尽管天然石墨是中国的优势矿物资源,储量、产量、国际贸易量均居世界前位,但中国的石墨产业布局严重畸形的局面却亟待改变。民进中央长期调研发现,长期以来国内石墨产业矿产资源资料落后,生产品级划分不严,浪费严重,基本上处于采选和初加工阶段,技术严重落后,产品绝大部分为普通中高炭矿产品。值得注意的是,日、美等发达国家将天然石墨作为战略资源,却利用中国的廉价原料,深加工成能够在电子、能源、环保、国防等领域应用的先进石墨材料,以极高的价格占领国际市场并返销中国。


      我国石墨主要出口国家分别是美国、日本、韩国、德国等,每年出口量占世界各国总出口量的80%以上。日本是全球最大的石墨进口国,其中98%从我国进口,美国天然鳞片石墨完全依靠进口,其中48%来自我国。我国石墨初级产品的出口国又恰恰是我国高附加值石墨产品的进口国。在我国大量出口石墨初级产品的同时,美、日、韩等发达国家却早早把石墨列为战略资源,严格控制开采,以采代购



高纯石墨    发展高附加值石墨制品的关键

       中国生产的天然石墨产品中,绝大部分是最初级的加工产品。这些初级加工产品,都面临着产能过剩的问题,而产能过剩又压制了价格。伴随初级产品出口为主,中国石墨的高附加值产品研发和生产则明显缺失,随着科学技术的不断进步,高纯微细石墨的用途越来越广。普通的高碳石墨产品已不能满足原子能,核工业的飞速发展急需大量的高纯石墨。


       据2011年不完全统计,中国高纯石墨年需求量约为20万吨左右。国外以其技术优势在高纯石墨方面占据领先地位,并在石墨高技术产品方面对中国进行禁运。目前中国高纯石墨技术只能勉强达到纯度99.95%,而99.99%乃至以上的纯度只能全部依赖进口。2011年,中国天然石墨产量达到约80万吨,均价约为4000元/吨,产值约为32亿元。目前,进口99.99%以上高纯石墨的价格超过20万元/吨。其进出口由于技术壁垒导致的价差非常惊人


加强技术研发,提高产品质量

       高密度高强度石墨较传统石墨除了具有高密度,高强度的强度外,还具有良好的热稳定性。良好的热稳定性是使石墨高温使用中抗氧化性能大幅度提高,特别在模具行业,比传统石墨可延长20-50% 的寿命        


       对于中国石墨行业而言,技术进步是其发展的重心和关键。许多国家,尤其是一些发达国家,不断致力于提高技术水平来开发石墨新产品和新用途,甚至由于多年积累,已经形成寡头垄断的态势。例如氟化石墨主要由美、日、俄生产;膨胀石墨主要由美、日、德、法等国垄断;其中高纯膨胀石墨只有日本生产。


        近几年,我国涌现出许多石墨新技术和优秀科技成果,高纯石墨材料开发与应用取得了可喜的进步。只有不断依靠技术创新提高企业核心竞争力作为生存发展之道,不断培育技术人才,加大科技投入,提高科技转化、创新能力,才是石墨企业发展的根本。  为帮助国内石墨生产企业提高产品质量,发展高端产品,我们特收集整理精选了本专集资料。






    


    

内容介绍

                        石墨提纯 现有工艺存在缺陷


     随着技术的不断发展,通过选矿工艺得到的鳞片状高碳石墨产品己不能满足某些高新行业的要求,因此需要进一步提高石墨的纯度。目前,国内外提纯石墨的方法主要有浮选法、酸碱法、氢氟酸法、氯化焙烧法、高温法等。其中,酸碱法、氢氟酸法与氯化焙烧法属于化学提纯法,高温提纯法属于物理提纯法   


       1、 浮选法:是利用石墨的可浮性对石墨进行富集提纯,适应于可浮性好的天然鳞片状石墨,石墨原矿经浮选后最终精矿品位通常为90%左右,有时可达94%~95% 。使用此法提纯石墨只能使石墨的品位得到有限的提高,是因为部分硅酸盐矿物和钾、钠、钙、镁、铝等化合物里极细粒状浸染在石墨鳞片中,即使细磨也不能完全单体解离,所以采用选矿方法难以彻底除去这部分杂质。        


       2、 酸碱法:是当今我国高纯石墨厂家中应用最广泛的方法,其原理是将NaOH与石墨按照一定的比例混合均匀进行锻烧,在500-700℃氯化焙烧法的高温下石墨中的杂质如硅酸盐、硅铝酸盐、石英等成分与氢氧化钠发生化学反应,生成可溶性的硅酸钠或酸溶性的硅铝酸钠,然后用水洗将其除去以达到脱硅的目的;另一部分杂质如金属的氧化物等,经过碱熔后仍保留在石墨中,将脱硅后的产物用酸浸出,使其中的金属氧化物转化为可溶性的金属盐,而石墨中的碳酸盐等杂质以及碱浸过程中形成的酸溶性化合物与酸反应后进入液相,再通过过滤、洗涤实现与石墨的分离,从而达到提纯的目的。但是此种提纯方法的缺点在于需要高温锻烧,设备腐蚀严重,石墨流失量大以及废水污染严重,且难以生产碳含量99.9%及以上的高纯石墨。        


       3、 氢氟酸提纯法:是利用氢氟酸能与石墨中几乎所有的杂质反应生成溶于水的化合物及挥发物,然后用水冲洗除去杂质化合物,从而达到提纯的目的。使用氢氟酸法提纯石墨,除杂效率高、能耗低,提纯所得的石墨品位高、对石墨的性能影响小。但由于氢氟酸有剧毒和强腐蚀性,生产过程中必须有严格的安全防护措施,对于设备要求严格导致成本升高;另外氢氟酸法产生的废水毒性和腐蚀性都很强,需要严格处理后才能排放,环保环节的投入又使氢氟酸法的成本大大增加,如污水处理稍不到位,会对环境造成巨大污染。      


       4、氯化焙烧法是将石墨矿石在一定高温和特定的气氛下焙烧,再通入氯气进行化学反应,使石墨中的杂质进行氧化反应,生成熔沸点较低的气相或凝聚物的氯化物及络合物逸出,从而达到提纯的目的。由于氯气的毒性、严重腐蚀性和污染环境等因素,在一定程度上限制了氯化焙烧工艺的推广应用。


       5、高温法提纯石墨,是因为石墨是自然界中熔点、沸点最高的物质之一,熔点为3850 士50℃,沸点为4500℃,远高于所含杂质的熔沸点,它的这一特性正是高温法提纯石墨的理论基础。将石墨粉直接装入石墨士甘锅,在通入惰性保护气体和少量氟利昂气体的纯化炉中加热到2300~3000℃,保持一段时间,石墨中的杂质因气化而溢出,从而实现石墨的提纯。虽然高温法能够生产99.99%以上的超高纯石墨,但因锻烧温度极高,须专门设计建造高温炉,设备昂贵、投资巨大,对电力口热技术要求严格,需隔绝空气,否则石墨在热空气中升温到450℃时就开始被氧化,温度越高,石墨的损失就越大。这种设备的热效率不高,电耗极大,电费高昂也使这种方法的应用范围极为有限,只有对石墨质量要求非常高的特殊行业(如国防、航天等)才采用高温法小批量生产高纯石墨。


      (二) 能耗石墨提纯技术 国内最新研制

     据恒志信网消息:针对石墨提纯现有技术存在的问题。武汉工程大学研制成功一种对天然石墨进行高纯度提纯的方法及装置。该方法能耗低,所得到的石墨的纯度高,其装置简单。


       与现有技术相比,新工艺的有益效果是:

       1、工艺新颖、装置简单、能耗低、升温迅速,是采用等离子体炬加热技术,利用热等离子体局部超过4000℃的高温,使石墨原料中的杂质在短时间内充分气化,实现提纯石墨目的,可以实现石墨的连续提纯。


       2、原理与现行高温提纯法一致,但由于是将石墨粉直接送入具有极高温度的等离子体焰流中直接加热,因此热利用率极高。而采用现有高温炉提纯,热能除了加热物料外更多的是在加热炉体,并被散发到环境中。

   

       3、采用新技术工艺,石墨的纯度高(碳质量含量≥98.7%)。初始碳质量含量90% 、粒度100目的石墨,经过一次提纯后碳质量含量98.7% ;经过第二次提纯碳质量含量99.5% 经过第三次提纯碳质量含量99.9%;如再经过几次循环石墨提纯到碳质量含量99.99%。


      资料中详细描述石墨提纯的方法及其装置,其能耗远低于现行高温提纯法。石墨的纯度高,装置简单。


       三)天然隐晶质石墨(矿)剥离提纯方法

       天然隐晶质石墨是我国的优势矿产资源之一,主要用于铸造、石墨电极、电池碳棒、耐火材料、铅笔和增碳剂等方面。隐晶质石墨晶体极小,石墨颗粒嵌于粘土中,很难分离。由于隐晶质石墨原矿品位高(一般含碳60%-80%),部分可达95%,平均粒径。.01-0.1μm,用肉眼很难辨别,故称隐晶质石墨,俗称土状石墨。与鳞片石墨相比,土状石墨碳含量高,灰分多,晶粒小,提纯技术难度大,使其应用范围受到极大限制。在我国,通常都是将开采出来的石墨矿石经过简单子选后,直接粉碎成产品出售。因此天然隐晶质石墨资源得不到充分的利用,甚至盲目出口,造成资源的浪费。鉴于天然隐晶质石墨的技术含量和附加值极低,而我国市场需要的高纯超细石墨则多数依赖进口,开展天然隐晶质石墨的提纯新方法尤为紧迫。


      据恒志信网消息:湖南大学最新研制成功天然隐晶质石墨的提纯新方法,解决了现有技术中天然石墨矿,特别是隐晶质石墨提纯技术难度大、成本高、污染大、资源浪费严重的问题,适用于不同品味、不同矿质的天然石墨的提纯,且成本低,环境污染小,低能耗,简单易行,具有广泛的应用前景。


       天然隐晶质石墨的提纯新方法具有如下优点:

       1、新技术所采用的插层剂原料价格低,可循环使用或回收利用。


       2、新技术对石墨结构无明显破坏,也不会产生明显缺陷,对大尺寸鳞片石墨具有保护作用。


       3、新技术所生产的产品多元化(高碳石墨、高纯石墨、石墨烯和石墨烯纳米片) ,可根据市场需求调整产品结构。


       4、新技术可在现有石墨浮边生产线上增添一定工艺设备进行实施,工艺简单,设备要求低,条件温和,成本低。


       5、新技术不使用酸和碱,污染物产生少,对环境友好。


       6、新技术适用于不同的固定碳含量的天然石墨矿,也可用于与辉钼矿的剥离提纯。


       技术指标:原料:高碳隐晶质石墨粉(固定碳含量为43.2% 200目)

       成品:高纯石墨(碳含量99.95% ),石墨回收率72% 。


     【资料描述】

     资料中详细描述了天然隐晶质石墨的提纯新方法、矿浆液调制方法、超声剥离的矿浆液、浮选、提纯等等步骤、以及生产实施例等等。





           纯度≥99.999% 天然石墨高温提纯新技

      

   【石墨高温提纯技术背景

      石墨作为工业原料,尤其在一些特殊行业以及原子能工业、汽车工业、航天技术、生物技术等高新技术工业,不但对石墨的碳含量要求极高,同时也要求在石墨的成分中不能含有过多的微量元素,必须是99.9%以上的高纯度石墨,然而现在一般的天然石墨含碳量均无法满足这些行业对高纯度石墨的要求,目前对天然石墨采取的提纯法仍是利用石墨的耐高温的性能,从而使用高温电热法提高石墨纯度,由于此工艺复杂,需要建设大型电炉,电力资源浪费严重,同时需要不断通入惰性气体,造成成本高昂。尤其重要一点,是当石墨纯度达到99.93%时,己达到极限,无法使石墨的固定碳含量继续提高。目前对于氯气提纯尚未形成工业化生产。


      现有技术存在工艺复杂、对原料的颗粒选择过大等缺点。国内外有采用高温提纯天然鳞片石墨,即将天然石墨装入己石墨化过的石墨士甘塌内进行石墨化提纯,利用石墨士甘锅具有良好的导电、导热以及耐高温特性,石墨灰粉2700度以上高温气化逸出,该方法能将纯度提高至99.99% 以上,但高温石墨纯化存在纯化时间长、工艺流程复杂、要求较高的温度同时严重浪费电力资源,然而化学提纯石墨的方法由于工艺落后,对于小颗粒的石墨不能较好的回收,对环境造成污染,并且纯度亦不能满足市场对产品的需求。

         

     【高纯度天然石墨的提纯新方法 研制成功】

    据恒志信网消息:针对上述现有技术存在的问题中。国内新研制成功一种纯度高、工艺简单、节省电力资源、利于石墨回收的高纯度天然石墨的提纯方法。是采用高温提纯石墨的方法,经过高温反应、化学提纯、洗涤、脱水后获得高纯度的石墨,利用氧化剂、络合剂与天然石墨进行反应,去除原料中杂质,得到微量元素含量低,性能稳定的石墨。新工艺对含碳量>60%的石墨原料进行纯化,得到纯度大于99.9991%,灰粉<1PPM,微量元素<0.5PPM的石墨,具有工艺简单,易于操作,生产效率高,耗电量低,不需要大型的加工设备,节约生产成本。


   【新技术优点

      在石墨提纯工艺中均采用化学提纯或氧化提纯工艺,对于6000目以上的天然石墨则提纯的纯度很难达到99.9以上。


       1、新提纯工艺利用氧化剂和络合剂与天然石墨原料进行化学反应,去除原料中Si02 A1203 MgO CaO P205、CuO 等杂质,从而生产出微量元素含量低,性能稳定的产品。而现有国内石墨提纯工艺中均采用化学提纯或氧化提纯工艺,对于6000目以上的天然石墨则提纯的纯度很难达到99.9以上。


      2、目前国内大多在提纯过程中采用自来水用于石墨的提纯工艺中,由于一般的水质中均含有Ca2+Mg2+、CL-、Si2+等离子物质,不利于去除石墨中本身所含有的Si02 A1203 MgO CaO P205 、CuO等杂质,新技术方案的工艺中采用经过离子交换树脂处理过的不含Ca2+Mg2+、CL-、Si2+等杂质离子的纯水,更好的去除石墨中所含有的Ca2+Mg2+、CL-、Si2+ 等杂质离子,同时可以使石墨中的pH 值达到6.4-6.9 。从而得到纯度高达99.999% 以上,灰粉<1PPM,微量元素<0.5PPM的石墨。
 

      3、新技术方案工艺中将反应釜内的温度加热至85-90℃,可以是石墨与所加入的氢氟酸、盐酸、硝酸和乙二胺四乙酸与石墨中的所含的Ca2+Mg2+、CL-、Si2+等杂质离子能够进行充分的化学反应,通过洗涤、脱水后,去除石墨中含有的Si02 A1203 MgO CaO P205、CuO等杂质,新技术方案中所选用的温度范围,并按照所述的温度范围进行提纯,能够使提纯达到最佳效果。络合剂具有分散、悬浮作用和很强的络合能力,在较小用量甚至极小用量就能达到需要的络合程度,络合剂还能有Ca2+、Mg2+等金属离子发生络合,形成金属络合物,从而达到去除金属离子的目的。


      4、新技术方案工艺中加入的络合剂能是络合剂与石墨中的Ca2+Mg2+等离子发生络合,形成金属络合物,通过洗涤、脱水去除石墨中含有的Si02 A1203 MgO CaO P205、CuO等杂质,技术方案选用合适的络合剂,并按照所述的比例加入进行提纯够进一步提高纯化的效果.


      5、新技术工艺可对粒度为100-10000目,含碳量>60% 的石墨原料进行纯化,得到纯度为99.999% 的石墨成品,具有工艺简单,易于操作,反应时间短,生产效率高,耗电量低,在提纯过程中不需要大型的加工设备,节约生产成本。所得产品可应用于电子工业、国防尖端工业、化学分析工业、核工业、航天工业等高科技领域。


       【高纯度天然石墨的提纯方法】部分摘要


    提纯步骤为:

    步骤一、取含碳量>60% 的石墨400公斤,放入反应釜Ⅰ内,按石墨的重量百分比依次加入30公斤乙二胺四乙酸、50公斤氢氟酸(浓度40%)、2公斤硝酸(浓度98%)。盐酸(浓度30%),后加入100L水,开机搅拌,转速200转/分钟,搅拌时间20分钟;
        

    步骤二、升温反应,开启反应釜上温控装置,使反应釜内的温度升至85℃,反应4小时,反应过程中每隔50分钟搅拌一次,每次搅拌时间3分钟,搅拌速度200转/分钟,反应完成后,再静置3小时,静置完成后排出反应釜内尾气,制得混合料浆A;


    步骤三、将混合料浆A 置入冷却塔Ⅱ内,向冷却塔Ⅱ内注入重量为混合料浆A两倍量的纯水,形成混合料浆A-2,边注水边搅拌,搅拌速度200转/分钟,搅拌至冷却塔II内的温度降至35℃止,完成降温后,打开冷却塔II 的放料阀,将混合料浆A-2 置入洗涤器Ⅲ内;


    步骤四、将混合料浆A-2置入洗涤器Ⅲ中后,向洗涤器Ⅲ中注入纯水,边注水边洗涤,洗涤器Ⅲ的洗涤转速500转/分钟,洗涤至混合料浆A-2 的pH值呈6.4止,后将洗涤器III的转速设置为1000转/分钟,进行离心脱水,脱水至混合料浆A-2的含水量为20%止,停止脱水,制得混合料浆B;


    步骤五、混合料浆B 重新放入反应釜Ⅰ内,按石墨重量百分比加入80公斤硫酸(浓度98%)、40公斤氢氟酸(浓度40%),然后加入纯水100L,搅拌20分钟,搅拌速度为200转/分钟;


    步骤六、第二次升温反应,开启反应釜的温控装置,使反应釜内的温度升至85℃,反应2小时,反应过程中每隔1小时进行一次搅拌,每次搅拌时间3分钟,每次搅拌速度为200转/分钟,反应结束后,关闭电源,打开反应釜I 上的尾气排放阀,将反应釜I内的废气排出,制得混合料浆C;


      步骤七、
步骤八、步骤九、步骤十、步骤十一、步骤十二

         ...............略      详细步骤请见本资料专集


       步骤十三、将脱水后的混合料浆H 送至烘干设备上烘干,烘干温度为150-350 ℃,烘干后的含水量<0.1% ,碳含量为99.9991% -99.9995%,制得产品;

      

     【资料描述

    资料中详细描述了高纯度天然石墨的提纯技术的制备方法、现有技术所存在的问题,性能和优点、实施例等等。

  欲要了解高纯石墨最新生产方法?            请立即购买本专集
国际新技术资料网

北京恒志信科​​​​技发展有限公​司


      我们的优势    

      国际新技术资料网拥有一支工作态度认真、业务基础扎实、团结协作意识强、专业技术水平过硬的员工队伍。我们以质量、信誉、完善的售后服务为准则,以优质的服务、雄厚的技术力量、先进的情报手段服务于广大客户。公司和自2000年成立以来,与有关科研单位、报社、信息中心共同合作为近万家企业单位、科研院校提供了有效的专题资料服务,得到了广大的企业家、科研工作者的好评

     

     国际新技术资料网由北京恒志信科技发展有限责任公司组建,是专门致力于企业经济信息、科技信息开发、加工整理、市场调查和信息传播的专业化网站,网站发展宗旨是:致力于我国信息产业的建设,及时向企业、科研部门提供最新的国际最领先技术的科技信息情报,有效服务于企业新产品开发、可行性论证和推广。


      们的业

       网站主要提供包括美国、日本、韩国、欧洲各国的专利技术资料、世界排名企业最新技术情报资料收集整理、数据加工、资料翻译,接受企业、科研院所委托专题情报服务。网站主要栏目包括世界科技发展热点的各类先进的新材料石油助剂、化工助剂、建筑涂料,粘合剂 肥料配方,金刚石砂轮,金刚石锯片,磁材,金属表面处理,水处理及水处理剂等新技术工艺配方

发展无止境,创新无止境。国际新技术资料网以不断追求创新和技术进步为动力,以完善质量保证和良好服务为根本,以诚实、信誉为宗旨,竭诚与各界朋友、新老客户诚信合作,共创辉煌!