高性能膨胀石墨、可膨胀石墨制备技术工艺配方资料精选

国际新技术资料网 创新科技之路
New Technology Of High Purity Graphite
国际新技术资料网LOGO
国际新技术资料网最新推出
新版说
各位读者:大家好!

       自从我公司2000年推出每年一期的石墨新技术系列列新技术汇编以来,深受广大企业的欢迎,在此,我们衷心地感谢致力于创新的新老客户多年来对我们产品质量和服务的认同,由衷地祝愿大家工作顺利!

       石墨产业未来市场前景十分广阔。传统应用领域对石墨消费拉动、新兴领域拓展是石墨产品未来市场的增长点。耐火材料行业是石墨消费的重要领域,镁碳砖对石墨的需求量占我国石墨消费量的近1/3,电动汽车锂电池负极材料,钢铁行业的持续稳定发展将促进石墨产业持续稳定增长。随着高新技术的发展、新材料产业将成为石墨产业新的增长点,高性能石墨导电材料、密封材料、环保材料、热交换材料、石墨烯等新兴材料以及制品产业将会得到快速发展。

       石墨产品需求结构将不断升级,球型石墨、柔性石墨、石墨电极、核石墨等加工产品将成为新的市场热点;利用具有自主知识产权的创新性技术,研究开发优质石墨新材料、广泛应用于能源、环保、国防等领域。未来产品需求专业化程度不断加强,满足下游领域对高性能、专业化石墨材料制品需求将成为发展主流,由石墨原材料向深加工加工及其制品方向发展趋势明显,同时,大力发展节能环保、新能源、生物、高端装备制造、新材料、新能源汽车等战略新兴产业,从而带动石墨产业快速发展。

       本期所介绍的资料,系统全面地收集了到2023年膨胀石墨制备制造最新技术,包括:优秀的专利新产品,新配方、新产品生产工艺的全文资料。其中有许多优秀的新技术在实际应用巨大的经济效益和社会效益,这些优秀的新产品的生产工艺、技术配方非常值得我们去学习和借鉴。
       全国订购热线:13141225688 在线订购!

2024新版《高性能膨胀石墨、可膨胀石墨制造工艺配方精选汇编》

<a target="_blank" href="http://wpa.qq.com/msgrd?v=3&uin=&site=qq&menu=yes"><img border="0" src="http://wpa.qq.com/pa?p=2::51" alt="点击这里给我发消息" title="点击这里给我发消息"/></a>
《高性能绝缘润滑油技术工艺配方及应用汇编》

《高性能绝缘润滑油技术工艺配方及应用汇编》

【资料页数】725页 (大16开 A4纸)
【资料内容】制造工艺及配方
【项目数量】81项
【交付方式】上海中通(免邮寄费) 顺丰(邮费自理)
【资料价格】合订本:1580元(上、下册 书籍)
      电子版:1360元(PDF文档 邮件传送)
订 购 电 话: 13141225688   13641360810
联   系   人: 梅 兰 (女士)

0.00
0.00
数量:
立即购买
加入购物车
  

【资料页数】725页 (大16开 A4纸)
【资料内容】制造工艺及配方
【项目数量】81项
【交付方式】上海中通(免邮寄费) 顺丰(邮费自理)
【资料价格】合订本:1580元(上、下册 书籍)
      电子版:1360元(PDF文档 邮件传送)
订 购 电 话: 13141225688   13641360810
联   系   人: 梅 兰 (女士)

 1    八苯胺丙基聚倍半硅氧烷改性植物绝缘油的方法,大幅度提升植物绝缘油起始氧化温度,稳定性能大大增强,其次,对绝缘油的击穿电压、介质损耗因数、绝缘性能和导热性能也都有增强的作用。

2    天然酯绝缘油的制备方法,属于绝缘材料领域。能够在低温地区的使用、运动黏度小、流动性和散热能力高的天然酯绝缘油。本申请制备的天然酯绝缘油,100℃下运动粘度低至6mm2/s,40℃下运动粘度低至30mm2/s,倾点低至‑28℃,抗氧化能力较好,绝缘性能优于传统的传统天然酯。

3    天然酯绝缘液制备方法。以质量百分比计,具备有良好的电气绝缘性能的同时,还具备高燃点、高闪点、低倾点、无毒无害、良好的可生物降解性能和氧化安定性。

4    天然酯基础油及其制备方法和天然酯绝缘油及其应用,主要成分为三油酸甘油酯和/或三亚油酸甘油酯,具有较低的倾点及运动粘度。天然酯绝缘油100℃的运动粘度为7.735mm2/s、40℃的运动粘度为32.01mm2/s、倾点为‑25℃。

5    废变压器油的再生制备方法,主要包括以下步骤:减少资源浪费的效果。

6    通过纳米氮化硼改性的低凝点大豆绝缘油的制备方法,制得的绝缘油在保证绝缘性能和导热性能的前提下,具有更低的凝点,改善绝缘油在集输、储存等作业中的质量和效率,提高了油品的使用性能。

7    高介电常数橄榄绝缘油的制备方法,提高了绝缘油介电常数和击穿电压,应用油纸绝缘系统使电场分配更合理,提高了绝缘可靠性,并且该方法原料成本低,简化了制备的步骤,有利于生产效率提高以及节约原料和时间成本。

8    利用纳米氧化镁改性的高体积电阻率棕榈绝缘油制备方法,制备的绝缘油具有高体积电阻率,性能稳定,应用于变压器运行有利于进一步提高变压器安全可靠性。

9    利用纳米TiO2改性葵花籽油制备抗电荷积聚绝缘油,采用纳米二氧化钛(TiO2)粒子改性葵花籽绝缘油,使葵花籽绝缘油的抗电荷积聚能力提高,使其在保证其电气绝缘性能的前提下使电荷易消散、难积聚,减少了由电荷积聚引起的电场畸变程度,使变压器运行更加安全。

10 抗氧化菜籽绝缘油的制备方法,采用纳米氧化铝粒子改性菜籽绝缘油,在保证电气绝缘性能的前提下可以增强其抗氧化性。

11 利用纳米纤维素改性的低电导率橄榄绝缘油及其制备方法,具有低电导率、耐击穿和高导热性的优点,采用本发明纳米纤维素改性的橄榄绝缘油制备方法,各原料分散均匀,制备步骤简单,成本较低,利于推广和工业化生产。

12 纳米SiC改性的高导热率玉米绝缘油及其制备方法。具有较高的导热系数,而且具备较高体积电阻率。

13 利用纳米SiO2改性的棕榈绝缘油的制备方法,采用间隔分散加多次分散相结合的方式进行超声分散,能极大提升二次改性的SiO2纳米粒子的导热系数。

14 低酸值的纳米Al2O3改性蓖麻绝缘油的加工方法,采用间隔分散加多次分散相结合的方式进行超声分散,超声分散的效果更好,能极大提升第三改性三氧化二铝纳米颗粒的导热系数。

15 高阻燃高电气性能的变压器油及其制备方法,通过在矿物变压器油中添加环三磷腈阻燃剂,获得了一种高阻燃、高电气性能、低成本的变压器油,明显优于现有的高燃点变压器绝缘油,可直接推广应用,无需对现有的变压器进行更新替换,具有重要的研究意义和商业价值。

16 阻燃变压器油及其制备方法,提高矿物变压器油与阻燃剂的相容性,从而获得阻燃性能较好的变压器油,弥补了高燃点的合成绝缘油、植物绝缘油因自身粘度大、稳定性差或成本高等因素难以广泛应用的不足,提高了矿物绝缘油的使用价值。

17 利用纳米氧化镁改性的亲水性玉米绝缘油的制备方法,利用纳米氧化镁改性的亲水性玉米绝缘油的制备方法,在玉米绝缘油中添加纳米氧化镁粒子,在保证绝缘油电气绝缘性能的前提下可以增强绝缘油的亲水性,有利于吸收绝缘纸中的水分,减少少分扩散到绝缘纸中,降低了水分对绝缘纸的破坏,使变压器运行更加稳定。

18 具有良好抗氧化性能的耐低温环保型天然酯类混合绝缘油及其制备方法,制备的天然酯类混合绝缘油具有优良的抗氧化性能和耐低温特性,理化、电气性能良好,能够满足低温下的使用条件,有效扩大了天然酯类绝缘油的应用范围。

19 基于短时超声分散技术的间歇式植物绝缘油精炼工艺,采用机械搅拌与超声分散相结合的真空过滤方式,通过合理设置超声参数,有效避免了因能量过大导致植物绝缘油裂解产生CH4、C2H4等可燃有机气体的问题;提高了植物绝缘油精炼效果,简化了工艺流程,降低了生产成本,制备的植物绝缘油综合性能优良,技术优势显著,易于工业化推广。

20 废变压器油的再生处理方法,绿色、环保、高效、成本低廉,且不产生新的污染物,真正做到变废为宝和资源的循环、高效利用。

21 APTES表面改性纳米SiO2绝缘油的制备方法,减少了纳米SiO2表面的亲水性羟基,增加了其分散性,减少了纳米SiO2的团聚,提高了矿物绝缘油的击穿性能。

22 基于铁赋存形态的纳米粒子改性绝缘油制备方法,属于油浸式电力变压器中绝缘油处理领域,消除了铁的不同赋存形态对绝缘油老化及电气性能的影响,成功解决了不同赋存形态发生的团聚、沉淀等行为;提高绝缘油的绝缘性能及导热性能;延缓绝缘油的老化;成本低、操作简单、运行可靠、无二次污染等优点。

23 润滑油组合物制备方法,其能够平衡良好地具备电绝缘性、防烧结性和耐磨性。

24 高性能变压器油及其制备方法。制备方法简单易行,制作成本低廉,适宜大生产的变压器油制备工艺,制备的变压器油具有良好的抗氧化性能和电气性能,延长了变压器的使用寿命,提高了变压器的工作效率。

25 氟化液组合物及其在变压器中的应用,与传统变压器油相比,具有更好的流动性、导热性、散热性、绝缘性、沸点高、凝固点低、密度小等性质,且因其环境友好型、抗氧化和低酸值等优势应用于变压器中,减少目前变压器介质的缺陷,提高变压器寿命。

26 改性纳米金刚石变压器油制备方法,由改性纳米金刚石颗粒和变压器油混合而成,所通过对纳米金刚石进行改性,在变压器油中分散,得到具有良好的绝缘性和导热性的改性纳米金刚石变压器油,可以满足大容量、超高电压等级和小型化电力变压器的要求,而且所用设备简单、易操作,可实现大规模生产。

27 废变压器油的再生制备方法,所含有的杂质可以得到有效的去除,进一步保证得到的再生变压器油的纯度,提高其使用性能。

28 低粘度混合绝缘油及其制备方法和应用,操作简单,安全环保,且制得的混合绝缘油的抗老化能力,运动粘度和工频击穿电压较天然酯绝缘油有明显改善,显著增强了天然酯绝缘油在大型变压器中运行的可靠性。

29 天然酯变压器油制备方法,油品的抗氧化能力得以显著提高,因高温氧化引起的粘度增长、油泥生成等得以有效抑制,显著提升变压器油的高温抗氧化安定性能,变压器油品的析气性优异,明显优于天然酯基础油及矿物变压器油。

30 抗析气天然酯绝缘油及其制备方法。在制备天然酯绝缘油的过程中,通过向原料中添加苄基甲苯,显著增强了所制备的天然酯绝缘油的析气性,且降低了其运动粘度。增强天然酯绝缘油的析气性,进而避免因上述气体引起的天然酯绝缘油加速老化等现象,避免变压器故障的发生。

31 U型变压器油组合物制备方法,采用三次加氢型环烷基基础油与特定析气性环烷基基础油进行调配,良好的析气性环烷基基础油中的环烷烃化学结构比不饱和碳链、芳香烃稳定,既能吸收不饱和碳链经高压电分解出的氢气,又能保证变压器油化学稳定性及良好的氧化安定性能。

32 植物油基合成酯绝缘油即其制备方法,具有较好的耐火安全性能,电气绝缘性能优良,酸值低于0.03mgKOH/g,水分含量小于40ppm,凝点降到‑27℃。能应用于高防火性能要求的场所,并且发生火灾和爆炸的风险都远低于传统变压器油,具有广泛的应用前景。

33 电力变压器用植物绝缘油的制备方法,采用微胶囊技术将艾叶油进行包覆,提高了艾叶油的使用稳定性,降低了艾叶油自身的氧化变质速度,而且在缓释过程中实现对植物绝缘油的更长效的抗氧化作用,而且所用的艾叶油为天然物质,可生物降解,环保性好,具有很好的发展潜力。

34 高燃点矿物绝缘油制备方法,通过向矿物绝缘油中添加合适的液体阻燃剂提高绝缘油燃点,液体阻燃剂的添加不仅不会改变矿物绝缘油的理化和电气性能,使得绝缘油兼有矿物绝缘油优良的冷却和绝缘性能。

35 纳米植物绝缘油的制备方法,制备步骤简捷,制备产物中纳米粒子与植物绝缘油之间的界面热阻很低,能提升导热率;纳米粒子与植物绝缘油之间的相容性好,能均匀分散,能极大程度减少团聚的现象,并且本发明制备成本较低,适合推广,利于工业化生产。

36 具有高抗氧化性能纳米植物绝缘油的制备方法,制备工艺简单,引入二氧化硅包覆富勒烯抗氧化剂既能保证产品具有良好的抗氧化性,并且由于其化学结构稳定,产品还具有良好的稳定性,其中包含纳米粒子,还具有良好的介电强度和导热性能,使得绝缘油的性能更加多样性。

37 纳米粉体复合植物绝缘油的制备方法,制备的产品含有的纳米粉体具有极高的比表面积和反应活性,可以吸收植物绝缘油老化过程中产生的活性氧,抑制植物绝缘油酯分子的氧化过程,同时,纳米粉体能够吸附植物绝缘油中的水分,从而降低酯分子的水解作用,提高植物绝缘油的抗老化作用。

38 环烷基变压器油组合物制备方法,可以满足IEC60296:2012标准中I‑40℃变压器油(特殊用途)级别指标要求。

39 高绝缘高稳定改性变压器油制备方法,所得改性变压器油原料种类少,各原料分散均匀,大大提高了变压器油的绝缘性能和稳定性。

40 纳米二氧化钛改性变压器油及其制备方法,原料分散均匀,改性纳米二氧化钛的加入大大提高了变压器油的导热性能和电气性能。

41 可生物降解的高燃点绝缘油及其制备方法,符合最新IEC 62770:2013标准,且具有较高的闭口闪点和燃点(闭口闪点高于270℃、燃点高于350℃),环境安全性较高,可应用于变压器等充油电气设备的油浸绝缘。

42 降低介质损耗因数的变压器油的制造工艺,涉及变压器油制造领域。该降低介质损耗因数的变压器油的制造工艺,变压器油内部水分极少,且在使用时不易产生酸性物质,去除混合油内部催化剂以及重新形成的杂质,最终得到的少水少酸的变压器油。

43 导热性能强的变压器油制作工艺,具有高导热性,便于使用。

44 植物绝缘油及其制备方法和应用,制备得到的植物绝缘油在保证良好理化特性和环保性能的前提下,具有氧化安定性高、介质损耗小的特性。

45 改性高燃点变压器油及其制备方法,具有矿物绝缘油优良的散热性能、绝缘性能和价格低廉等特点,还具有难燃防火性能高的特点,而且不需对现有变压器进行任何更改就可替代原来常规的低燃点矿物绝缘油,可广泛应用推广,具有重要现实意义和商业价值。

46 提高变压器油浸纸板界面绝缘性能的方法,该油浸纸板导热系数提高了16‑18%,介质损耗降低了54‑55%,导电率为10‑8‑10‑6S/m,能够经受高强度极化疲劳的考验,提高油浸纸板界面的绝缘性能,解决现有改性粒子添加导致击穿电压下降的问题。

47 甘油‑磁性纳米粒子绝缘油及其在脉冲功率技术中的应用,解决甘油应用于绝缘油时流动性较差的问题,安全可靠且能够长时间保持合理温度,同时掺杂磁性纳米粒子后,对于甘油绝缘能力同样具有提高作用。

48 含纳米粉体的天然酯绝缘油的制备方法及制备装置,包括超声模块、离心模块、分析检测模块、真空混合模块和脱气脱水模块的含纳米粉体的天然酯绝缘油的制备装置。制备的绝缘油的导热系数高、介电损耗小、击穿电压高。

49 窄馏程低粘度绝缘油的无尘化生产方法,生产出来的窄馏程低粘度绝缘油具有馏分窄、粘度低、散热快、冷却性能好、电气绝缘性能佳、介质损失小、抗氧化安全性好、使用寿命长、凝点低、低温流动性好、闪点高、蒸发性小的优点。

50 低温型混合绝缘油的制备方法,解决现有混合绝缘油凝点过高,不适用于寒冷地区的问题。将矿物绝缘油和植物绝缘油通过特殊工艺进行混合,制备适于寒冷地区应用的低温型混合绝缘油,凝点低于‑40℃。应用于混合绝缘油的制备领域。

51 低倾点植物绝缘油的制备工艺,结合的深度脱酸方式可将植物绝缘油酸值降至极低水平;结晶分提和添加剂的有效结合可使植物绝缘油倾点达到‑25℃以下,能够满足我国大部分地区应用需求。整个工艺流程简单,易操作,生产成本低,精炼率高完全满足工业化生产的技术需求。

52 具有良好抗氧化性能的低倾点环保型变压器油,理化、电气性能优良,倾点小于‑25℃,48h氧化安定性试验后总酸值小于0.3mgKOH/g,介质损耗因数(90℃)小于8%,稳定性好,制备工艺流程简单,技术优势明显,完全满足其在我国大部分地区的应用需求,推广应用前景良好。

53 天然酯绝缘油用高性能复合添加剂及其制备方法,提高天然酯绝缘油的抗氧化性能和低温特性,抑制金属腐蚀,而且添加剂之间产生的协同增效作用能够进一步提高添加剂效能,延长添加剂的使用寿命。

54 小桐子绝缘油制备方法,属于植物绝缘油的制备技术领域。制备的小桐子绝缘油成本低、耐高温、易降解、稳定性好、低温冷凝性好的绝缘油,使其满足变压器、断路器、电流和电压互感器、套管等油浸绝缘高电压设备的应用需求。

55 石墨烯改性的植物绝缘油及其制备方法,通过使用精炼菜籽油,并采用石墨烯和复合抗氧化剂改善精炼菜籽油性能,使得绝缘油具有抗氧化安定性能好、阻燃防火性能高的特点,具有良好的绝缘、导热性能、优良的使用性能,使用寿命长,安全系数高,可满足大容量、超高电压等级的绝缘冷却介质的需求。

56 可生物降解变压器油制备方法,采用特定配比的多元醇酯和不饱和脂肪酸甘油酯作为主要组分,并与其它特定含量组分实现较好的相互作用,得到的可生物降解变压器油同时具有良好的绝缘性能、优异的物理化学稳定性、耐湿性、防火安全性和可生物降解性,满足油浸式变压器的使用要求。

57 改性绝缘油、制备方法及其应用,通过物理方法与高分子化合物进行复合,使得粒子与介质中分子的界面相容性增强,使得粒子容易分散在有机介质中,使得改性绝缘油具有优异的绝缘性能和耐热性能,在电力系统领域中具有广泛的工业应用价值。

58 改性变压器油及其制备方法,通过改性纳米氧化铝粒子分散到变压器油中制得,其中,改性纳米氧化铝粒子通过酯化反应,使其表面的羟基转化为醚键和酯键,从而提高其表面的亲油性,经检测,改性变压器油具有优异的绝缘性能和耐热性能,在电力系统领域中具有广泛的工业应用价值。

59 高击穿电压的纳米改性变压器油的制备方法,纳米改性变压器油冲击击穿特性的改善与添加改性铁磁性导电纳米粒子Fe3O4捕获电子并改变原有空间电场分布相关,提高了变压器油的击穿电压,从而提升了其绝缘性,保证了人身安全。

60 抗老化变压器油的制备方法,能有效的提升变压器油的抗氧化安定性,减少油泥的产生、延缓介质损耗因数升高。

61 抗氧化植物绝缘油的制备方法,通过添加亲油型分散二氧化硅纳米粒子,制备抗氧化植物绝缘油,二氧化硅纳米粒子可以吸收植物绝缘油老化过程中产生的活性氧,有效抑制植物绝缘油酯分子的氧化过程,提高植物绝缘油的抗氧化性,提高对活性氧的吸附能力,并且能有效吸附β‑环糊精包埋鼠尾草精油微胶囊,避免微胶囊产生团聚现象。

62 应用于锂电池降温的绝缘矿物油的制备方法,制备的绝缘矿物油以矿物油为主体,融入多种材料,使得绝缘油相对于普通矿物油具有更好的散热性能,锂电池运行温度更低、更稳定,有效提高锂电池的使用寿命和安全性;同时减少了对矿物油的使用,更加环保。

63一种绝缘矿物油。

64 高性能绝缘润滑脂及其制备方法。制备的高性能绝缘润滑脂储存期达18个月以上,不返稀、不冒油、不结构化,且具有优良的胶体安定性及剪切稳定性。

65 提高植物绝缘油导热性能和降低介质损耗的改性方法,高导热和低介质损耗的纳米植物绝缘油。

66 生产基于非石油的电绝缘油的方法,该方法包括提供非石油来源,包含异构化的直链烃的初级混合物;进行初级混合物的蒸馏和/或汽提;收集链烷烃基础油作为蒸馏和/或汽提的产物,其包含异烷烃和烷烃的混合物;和将基础油与抗氧化剂添加剂混合。

67 变压器油组合物制备方法,其绝缘性能、散热性能和抗氧化性能十分优异,不添加粘度指数改进剂和降凝剂,油品性质稳定,质量均一,闪点高、倾点低,并具有良好的氧化安定性、析气性和导热性能,可以满足大容量、普通及超高压等级和小型化电力变压器的要求,能够长期使用,是一种非常理想的变压器油。

68 提高植物绝缘变压器油电气性能的工艺方法,提高了植物绝缘变压器油的电气性能,生产过程简单,可规模化、工业化生产,解决了植物绝缘变压器油介质损耗因数超标难以去除,从而影响变压器安全运行的难题。降低植物绝缘变压器油介质损耗因数、提高电气性能的的创新技术,确保了变压器运行的安全性。

69 利用餐厨废弃油脂生产变压器油的方法,提高变压器油得率,比化学碱炼得率高30‑35%;完全杜绝含油、含皂废水排放;实现零污染、零排放,是生产绝缘脱酸变压器油的创新技术,具有广阔的应用前景和实际的应用价值,绿色环保。

70 植物绝缘油组合物及其制备方法和应用,制成的环保绝缘油具有氧化稳定性好,色泽透明,粘度低,冷却效率高的特点,可以满足特种变压器某些过负荷状态下的使用要求。

71 矿物绝缘油制备方法,不含有任何添加剂,完全依靠基础油本身的优异抗氧性能,使用了Ⅱ类环烷基加氢基础油,在低温下流动性好,完全符合IEC 60296‑2012质量标准不添加抗氧剂矿物绝缘油中的各项指标要求。

72 合成植物型绝缘油及其制备方法,具有较好低温性、电性能和氧化安定性。

73 降低绝缘油介质损耗因数的方法。解决目前变压器绝缘油长期使用后,其介质损耗因数过高的技术缺陷。

74 应用于锂电池降温的绝缘矿物油及其制备方法,用于锂电池降温的绝缘矿物油具有比传统混合绝缘油更低的运动粘度和介质损耗,使得绝缘油具有更优的散热性能,将使得锂电池油纸绝缘系统在同样运行负载下,具有更低的运行温度。

75 植物绝缘油的制备方法,有效降低目前工业用植物绝缘油的生产价格,同时缓解其产能不足的问题;本发明有效地弥补了普通植物绝缘油的含有气泡和杂质的缺点,使其绝缘性有了很大的提高。

76 纳米粒子改性变压器油制备方法,该纳米粒子改性变压器油显著提高了变压器油的导热性能,同时克服了纳米金属的添加给变压器油电绝缘性能带来的不利影响,具有良好的导热性、绝缘性和稳定性。

77 导热变压器油制备方法,提高了变压器油的导热性能,同时克服了纳米金属的添加给变压器油电绝缘性能带来的不利影响,具有良好的导热性、绝缘性和稳定性。

78 碱性壳聚糖膜用于矿物绝缘油脱色的方法,制备的碱性壳聚糖膜吸附性能高,脱色步骤简单、操作便捷、绿色环保,适合大规模应用。

79 具有指示变压器运行过程功能的植物绝缘油制备方法,提供了两种利用该植物绝缘油监测变压器运行过程的较为便捷的方法,减少了变压器绝缘油消耗,简化了监测过程,使得变压器运行更为安全可靠。

80 植物绝缘油及其制备方法。提高植物绝缘油的雷电冲击击穿电压,从而有效降低电力变压器绝缘故障发生的概率。

81 三元混合绝缘油及其制备方法,具有比传统混合绝缘油更低的运动粘度和介质损耗,使得绝缘油具有更优的散热性能,有效减缓油纸绝缘系统老化速率,延长油纸绝缘类电气设备绝缘寿命;以及更优良的环保性能和油纸绝缘体系配合性能。

购买理由

高密度高强度石墨国内外研发现状

    美国POCO Graphite Inc 利用超细粉石墨材料在2500℃以上,压力作用下的蠕变特性,成功开发再结晶石墨。再结晶石墨是在高温高压下使多晶石墨晶粒长大并走向排列而得到的高密度材料,石墨体内的缺陷(砂眼、裂纹等)消失,体积密度可达到1. 85-2.15g/cm3


   日本住友金属公司用MCMB 成功研制体积密度1.98-2.00g/cm3高密度各向同性石墨。日本无机材料研究所在沥青的苯不溶物添加油和1, 2一苯并菲等高沸点有机化合物,加热至350-600,制成粒径>1-100 的MCVIB 在4MPa的成型压力下成型,石墨化后得到高密度各向同性石墨。


  揭斐川电气公司用B阶缩合稠芳多核芳烃(COPNA)树脂为原料,在200 模压成型,固化后,再在400-500的条件下和非氧化性气氛中热压处理,经过后续工作得到高石墨化、导热性和导电性俱佳的高强高密(1. 85g/cm3) 石墨材料。


与发达国家相比还有很大差距

      然而,尽管天然石墨是中国的优势矿物资源,储量、产量、国际贸易量均居世界前位,但中国的石墨产业布局严重畸形的局面却亟待改变。民进中央长期调研发现,长期以来国内石墨产业矿产资源资料落后,生产品级划分不严,浪费严重,基本上处于采选和初加工阶段,技术严重落后,产品绝大部分为普通中高炭矿产品。值得注意的是,日、美等发达国家将天然石墨作为战略资源,却利用中国的廉价原料,深加工成能够在电子、能源、环保、国防等领域应用的先进石墨材料,以极高的价格占领国际市场并返销中国。


      我国石墨主要出口国家分别是美国、日本、韩国、德国等,每年出口量占世界各国总出口量的80%以上。日本是全球最大的石墨进口国,其中98%从我国进口,美国天然鳞片石墨完全依靠进口,其中48%来自我国。我国石墨初级产品的出口国又恰恰是我国高附加值石墨产品的进口国。在我国大量出口石墨初级产品的同时,美、日、韩等发达国家却早早把石墨列为战略资源,严格控制开采,以采代购



高纯石墨    发展高附加值石墨制品的关键

       中国生产的天然石墨产品中,绝大部分是最初级的加工产品。这些初级加工产品,都面临着产能过剩的问题,而产能过剩又压制了价格。伴随初级产品出口为主,中国石墨的高附加值产品研发和生产则明显缺失,随着科学技术的不断进步,高纯微细石墨的用途越来越广。普通的高碳石墨产品已不能满足原子能,核工业的飞速发展急需大量的高纯石墨。


       据2011年不完全统计,中国高纯石墨年需求量约为20万吨左右。国外以其技术优势在高纯石墨方面占据领先地位,并在石墨高技术产品方面对中国进行禁运。目前中国高纯石墨技术只能勉强达到纯度99.95%,而99.99%乃至以上的纯度只能全部依赖进口。2011年,中国天然石墨产量达到约80万吨,均价约为4000元/吨,产值约为32亿元。目前,进口99.99%以上高纯石墨的价格超过20万元/吨。其进出口由于技术壁垒导致的价差非常惊人


加强技术研发,提高产品质量

       高密度高强度石墨较传统石墨除了具有高密度,高强度的强度外,还具有良好的热稳定性。良好的热稳定性是使石墨高温使用中抗氧化性能大幅度提高,特别在模具行业,比传统石墨可延长20-50% 的寿命        


       对于中国石墨行业而言,技术进步是其发展的重心和关键。许多国家,尤其是一些发达国家,不断致力于提高技术水平来开发石墨新产品和新用途,甚至由于多年积累,已经形成寡头垄断的态势。例如氟化石墨主要由美、日、俄生产;膨胀石墨主要由美、日、德、法等国垄断;其中高纯膨胀石墨只有日本生产。


        近几年,我国涌现出许多石墨新技术和优秀科技成果,高纯石墨材料开发与应用取得了可喜的进步。只有不断依靠技术创新提高企业核心竞争力作为生存发展之道,不断培育技术人才,加大科技投入,提高科技转化、创新能力,才是石墨企业发展的根本。  为帮助国内石墨生产企业提高产品质量,发展高端产品,我们特收集整理精选了本专集资料。






    


    

内容介绍

                        石墨提纯 现有工艺存在缺陷


     随着技术的不断发展,通过选矿工艺得到的鳞片状高碳石墨产品己不能满足某些高新行业的要求,因此需要进一步提高石墨的纯度。目前,国内外提纯石墨的方法主要有浮选法、酸碱法、氢氟酸法、氯化焙烧法、高温法等。其中,酸碱法、氢氟酸法与氯化焙烧法属于化学提纯法,高温提纯法属于物理提纯法   


       1、 浮选法:是利用石墨的可浮性对石墨进行富集提纯,适应于可浮性好的天然鳞片状石墨,石墨原矿经浮选后最终精矿品位通常为90%左右,有时可达94%~95% 。使用此法提纯石墨只能使石墨的品位得到有限的提高,是因为部分硅酸盐矿物和钾、钠、钙、镁、铝等化合物里极细粒状浸染在石墨鳞片中,即使细磨也不能完全单体解离,所以采用选矿方法难以彻底除去这部分杂质。        


       2、 酸碱法:是当今我国高纯石墨厂家中应用最广泛的方法,其原理是将NaOH与石墨按照一定的比例混合均匀进行锻烧,在500-700℃氯化焙烧法的高温下石墨中的杂质如硅酸盐、硅铝酸盐、石英等成分与氢氧化钠发生化学反应,生成可溶性的硅酸钠或酸溶性的硅铝酸钠,然后用水洗将其除去以达到脱硅的目的;另一部分杂质如金属的氧化物等,经过碱熔后仍保留在石墨中,将脱硅后的产物用酸浸出,使其中的金属氧化物转化为可溶性的金属盐,而石墨中的碳酸盐等杂质以及碱浸过程中形成的酸溶性化合物与酸反应后进入液相,再通过过滤、洗涤实现与石墨的分离,从而达到提纯的目的。但是此种提纯方法的缺点在于需要高温锻烧,设备腐蚀严重,石墨流失量大以及废水污染严重,且难以生产碳含量99.9%及以上的高纯石墨。        


       3、 氢氟酸提纯法:是利用氢氟酸能与石墨中几乎所有的杂质反应生成溶于水的化合物及挥发物,然后用水冲洗除去杂质化合物,从而达到提纯的目的。使用氢氟酸法提纯石墨,除杂效率高、能耗低,提纯所得的石墨品位高、对石墨的性能影响小。但由于氢氟酸有剧毒和强腐蚀性,生产过程中必须有严格的安全防护措施,对于设备要求严格导致成本升高;另外氢氟酸法产生的废水毒性和腐蚀性都很强,需要严格处理后才能排放,环保环节的投入又使氢氟酸法的成本大大增加,如污水处理稍不到位,会对环境造成巨大污染。      


       4、氯化焙烧法是将石墨矿石在一定高温和特定的气氛下焙烧,再通入氯气进行化学反应,使石墨中的杂质进行氧化反应,生成熔沸点较低的气相或凝聚物的氯化物及络合物逸出,从而达到提纯的目的。由于氯气的毒性、严重腐蚀性和污染环境等因素,在一定程度上限制了氯化焙烧工艺的推广应用。


       5、高温法提纯石墨,是因为石墨是自然界中熔点、沸点最高的物质之一,熔点为3850 士50℃,沸点为4500℃,远高于所含杂质的熔沸点,它的这一特性正是高温法提纯石墨的理论基础。将石墨粉直接装入石墨士甘锅,在通入惰性保护气体和少量氟利昂气体的纯化炉中加热到2300~3000℃,保持一段时间,石墨中的杂质因气化而溢出,从而实现石墨的提纯。虽然高温法能够生产99.99%以上的超高纯石墨,但因锻烧温度极高,须专门设计建造高温炉,设备昂贵、投资巨大,对电力口热技术要求严格,需隔绝空气,否则石墨在热空气中升温到450℃时就开始被氧化,温度越高,石墨的损失就越大。这种设备的热效率不高,电耗极大,电费高昂也使这种方法的应用范围极为有限,只有对石墨质量要求非常高的特殊行业(如国防、航天等)才采用高温法小批量生产高纯石墨。


      (二) 能耗石墨提纯技术 国内最新研制

     据恒志信网消息:针对石墨提纯现有技术存在的问题。武汉工程大学研制成功一种对天然石墨进行高纯度提纯的方法及装置。该方法能耗低,所得到的石墨的纯度高,其装置简单。


       与现有技术相比,新工艺的有益效果是:

       1、工艺新颖、装置简单、能耗低、升温迅速,是采用等离子体炬加热技术,利用热等离子体局部超过4000℃的高温,使石墨原料中的杂质在短时间内充分气化,实现提纯石墨目的,可以实现石墨的连续提纯。


       2、原理与现行高温提纯法一致,但由于是将石墨粉直接送入具有极高温度的等离子体焰流中直接加热,因此热利用率极高。而采用现有高温炉提纯,热能除了加热物料外更多的是在加热炉体,并被散发到环境中。

   

       3、采用新技术工艺,石墨的纯度高(碳质量含量≥98.7%)。初始碳质量含量90% 、粒度100目的石墨,经过一次提纯后碳质量含量98.7% ;经过第二次提纯碳质量含量99.5% 经过第三次提纯碳质量含量99.9%;如再经过几次循环石墨提纯到碳质量含量99.99%。


      资料中详细描述石墨提纯的方法及其装置,其能耗远低于现行高温提纯法。石墨的纯度高,装置简单。


       三)天然隐晶质石墨(矿)剥离提纯方法

       天然隐晶质石墨是我国的优势矿产资源之一,主要用于铸造、石墨电极、电池碳棒、耐火材料、铅笔和增碳剂等方面。隐晶质石墨晶体极小,石墨颗粒嵌于粘土中,很难分离。由于隐晶质石墨原矿品位高(一般含碳60%-80%),部分可达95%,平均粒径。.01-0.1μm,用肉眼很难辨别,故称隐晶质石墨,俗称土状石墨。与鳞片石墨相比,土状石墨碳含量高,灰分多,晶粒小,提纯技术难度大,使其应用范围受到极大限制。在我国,通常都是将开采出来的石墨矿石经过简单子选后,直接粉碎成产品出售。因此天然隐晶质石墨资源得不到充分的利用,甚至盲目出口,造成资源的浪费。鉴于天然隐晶质石墨的技术含量和附加值极低,而我国市场需要的高纯超细石墨则多数依赖进口,开展天然隐晶质石墨的提纯新方法尤为紧迫。


      据恒志信网消息:湖南大学最新研制成功天然隐晶质石墨的提纯新方法,解决了现有技术中天然石墨矿,特别是隐晶质石墨提纯技术难度大、成本高、污染大、资源浪费严重的问题,适用于不同品味、不同矿质的天然石墨的提纯,且成本低,环境污染小,低能耗,简单易行,具有广泛的应用前景。


       天然隐晶质石墨的提纯新方法具有如下优点:

       1、新技术所采用的插层剂原料价格低,可循环使用或回收利用。


       2、新技术对石墨结构无明显破坏,也不会产生明显缺陷,对大尺寸鳞片石墨具有保护作用。


       3、新技术所生产的产品多元化(高碳石墨、高纯石墨、石墨烯和石墨烯纳米片) ,可根据市场需求调整产品结构。


       4、新技术可在现有石墨浮边生产线上增添一定工艺设备进行实施,工艺简单,设备要求低,条件温和,成本低。


       5、新技术不使用酸和碱,污染物产生少,对环境友好。


       6、新技术适用于不同的固定碳含量的天然石墨矿,也可用于与辉钼矿的剥离提纯。


       技术指标:原料:高碳隐晶质石墨粉(固定碳含量为43.2% 200目)

       成品:高纯石墨(碳含量99.95% ),石墨回收率72% 。


     【资料描述】

     资料中详细描述了天然隐晶质石墨的提纯新方法、矿浆液调制方法、超声剥离的矿浆液、浮选、提纯等等步骤、以及生产实施例等等。





           纯度≥99.999% 天然石墨高温提纯新技

      

   【石墨高温提纯技术背景

      石墨作为工业原料,尤其在一些特殊行业以及原子能工业、汽车工业、航天技术、生物技术等高新技术工业,不但对石墨的碳含量要求极高,同时也要求在石墨的成分中不能含有过多的微量元素,必须是99.9%以上的高纯度石墨,然而现在一般的天然石墨含碳量均无法满足这些行业对高纯度石墨的要求,目前对天然石墨采取的提纯法仍是利用石墨的耐高温的性能,从而使用高温电热法提高石墨纯度,由于此工艺复杂,需要建设大型电炉,电力资源浪费严重,同时需要不断通入惰性气体,造成成本高昂。尤其重要一点,是当石墨纯度达到99.93%时,己达到极限,无法使石墨的固定碳含量继续提高。目前对于氯气提纯尚未形成工业化生产。


      现有技术存在工艺复杂、对原料的颗粒选择过大等缺点。国内外有采用高温提纯天然鳞片石墨,即将天然石墨装入己石墨化过的石墨士甘塌内进行石墨化提纯,利用石墨士甘锅具有良好的导电、导热以及耐高温特性,石墨灰粉2700度以上高温气化逸出,该方法能将纯度提高至99.99% 以上,但高温石墨纯化存在纯化时间长、工艺流程复杂、要求较高的温度同时严重浪费电力资源,然而化学提纯石墨的方法由于工艺落后,对于小颗粒的石墨不能较好的回收,对环境造成污染,并且纯度亦不能满足市场对产品的需求。

         

     【高纯度天然石墨的提纯新方法 研制成功】

    据恒志信网消息:针对上述现有技术存在的问题中。国内新研制成功一种纯度高、工艺简单、节省电力资源、利于石墨回收的高纯度天然石墨的提纯方法。是采用高温提纯石墨的方法,经过高温反应、化学提纯、洗涤、脱水后获得高纯度的石墨,利用氧化剂、络合剂与天然石墨进行反应,去除原料中杂质,得到微量元素含量低,性能稳定的石墨。新工艺对含碳量>60%的石墨原料进行纯化,得到纯度大于99.9991%,灰粉<1PPM,微量元素<0.5PPM的石墨,具有工艺简单,易于操作,生产效率高,耗电量低,不需要大型的加工设备,节约生产成本。


   【新技术优点

      在石墨提纯工艺中均采用化学提纯或氧化提纯工艺,对于6000目以上的天然石墨则提纯的纯度很难达到99.9以上。


       1、新提纯工艺利用氧化剂和络合剂与天然石墨原料进行化学反应,去除原料中Si02 A1203 MgO CaO P205、CuO 等杂质,从而生产出微量元素含量低,性能稳定的产品。而现有国内石墨提纯工艺中均采用化学提纯或氧化提纯工艺,对于6000目以上的天然石墨则提纯的纯度很难达到99.9以上。


      2、目前国内大多在提纯过程中采用自来水用于石墨的提纯工艺中,由于一般的水质中均含有Ca2+Mg2+、CL-、Si2+等离子物质,不利于去除石墨中本身所含有的Si02 A1203 MgO CaO P205 、CuO等杂质,新技术方案的工艺中采用经过离子交换树脂处理过的不含Ca2+Mg2+、CL-、Si2+等杂质离子的纯水,更好的去除石墨中所含有的Ca2+Mg2+、CL-、Si2+ 等杂质离子,同时可以使石墨中的pH 值达到6.4-6.9 。从而得到纯度高达99.999% 以上,灰粉<1PPM,微量元素<0.5PPM的石墨。
 

      3、新技术方案工艺中将反应釜内的温度加热至85-90℃,可以是石墨与所加入的氢氟酸、盐酸、硝酸和乙二胺四乙酸与石墨中的所含的Ca2+Mg2+、CL-、Si2+等杂质离子能够进行充分的化学反应,通过洗涤、脱水后,去除石墨中含有的Si02 A1203 MgO CaO P205、CuO等杂质,新技术方案中所选用的温度范围,并按照所述的温度范围进行提纯,能够使提纯达到最佳效果。络合剂具有分散、悬浮作用和很强的络合能力,在较小用量甚至极小用量就能达到需要的络合程度,络合剂还能有Ca2+、Mg2+等金属离子发生络合,形成金属络合物,从而达到去除金属离子的目的。


      4、新技术方案工艺中加入的络合剂能是络合剂与石墨中的Ca2+Mg2+等离子发生络合,形成金属络合物,通过洗涤、脱水去除石墨中含有的Si02 A1203 MgO CaO P205、CuO等杂质,技术方案选用合适的络合剂,并按照所述的比例加入进行提纯够进一步提高纯化的效果.


      5、新技术工艺可对粒度为100-10000目,含碳量>60% 的石墨原料进行纯化,得到纯度为99.999% 的石墨成品,具有工艺简单,易于操作,反应时间短,生产效率高,耗电量低,在提纯过程中不需要大型的加工设备,节约生产成本。所得产品可应用于电子工业、国防尖端工业、化学分析工业、核工业、航天工业等高科技领域。


       【高纯度天然石墨的提纯方法】部分摘要


    提纯步骤为:

    步骤一、取含碳量>60% 的石墨400公斤,放入反应釜Ⅰ内,按石墨的重量百分比依次加入30公斤乙二胺四乙酸、50公斤氢氟酸(浓度40%)、2公斤硝酸(浓度98%)。盐酸(浓度30%),后加入100L水,开机搅拌,转速200转/分钟,搅拌时间20分钟;
        

    步骤二、升温反应,开启反应釜上温控装置,使反应釜内的温度升至85℃,反应4小时,反应过程中每隔50分钟搅拌一次,每次搅拌时间3分钟,搅拌速度200转/分钟,反应完成后,再静置3小时,静置完成后排出反应釜内尾气,制得混合料浆A;


    步骤三、将混合料浆A 置入冷却塔Ⅱ内,向冷却塔Ⅱ内注入重量为混合料浆A两倍量的纯水,形成混合料浆A-2,边注水边搅拌,搅拌速度200转/分钟,搅拌至冷却塔II内的温度降至35℃止,完成降温后,打开冷却塔II 的放料阀,将混合料浆A-2 置入洗涤器Ⅲ内;


    步骤四、将混合料浆A-2置入洗涤器Ⅲ中后,向洗涤器Ⅲ中注入纯水,边注水边洗涤,洗涤器Ⅲ的洗涤转速500转/分钟,洗涤至混合料浆A-2 的pH值呈6.4止,后将洗涤器III的转速设置为1000转/分钟,进行离心脱水,脱水至混合料浆A-2的含水量为20%止,停止脱水,制得混合料浆B;


    步骤五、混合料浆B 重新放入反应釜Ⅰ内,按石墨重量百分比加入80公斤硫酸(浓度98%)、40公斤氢氟酸(浓度40%),然后加入纯水100L,搅拌20分钟,搅拌速度为200转/分钟;


    步骤六、第二次升温反应,开启反应釜的温控装置,使反应釜内的温度升至85℃,反应2小时,反应过程中每隔1小时进行一次搅拌,每次搅拌时间3分钟,每次搅拌速度为200转/分钟,反应结束后,关闭电源,打开反应釜I 上的尾气排放阀,将反应釜I内的废气排出,制得混合料浆C;


      步骤七、
步骤八、步骤九、步骤十、步骤十一、步骤十二

         ...............略      详细步骤请见本资料专集


       步骤十三、将脱水后的混合料浆H 送至烘干设备上烘干,烘干温度为150-350 ℃,烘干后的含水量<0.1% ,碳含量为99.9991% -99.9995%,制得产品;

      

     【资料描述

    资料中详细描述了高纯度天然石墨的提纯技术的制备方法、现有技术所存在的问题,性能和优点、实施例等等。

  欲要了解高纯石墨最新生产方法?            请立即购买本专集
国际新技术资料网

北京恒志信科​​​​技发展有限公​司


      我们的优势    

      国际新技术资料网拥有一支工作态度认真、业务基础扎实、团结协作意识强、专业技术水平过硬的员工队伍。我们以质量、信誉、完善的售后服务为准则,以优质的服务、雄厚的技术力量、先进的情报手段服务于广大客户。公司和自2000年成立以来,与有关科研单位、报社、信息中心共同合作为近万家企业单位、科研院校提供了有效的专题资料服务,得到了广大的企业家、科研工作者的好评

     

     国际新技术资料网由北京恒志信科技发展有限责任公司组建,是专门致力于企业经济信息、科技信息开发、加工整理、市场调查和信息传播的专业化网站,网站发展宗旨是:致力于我国信息产业的建设,及时向企业、科研部门提供最新的国际最领先技术的科技信息情报,有效服务于企业新产品开发、可行性论证和推广。


      们的业

       网站主要提供包括美国、日本、韩国、欧洲各国的专利技术资料、世界排名企业最新技术情报资料收集整理、数据加工、资料翻译,接受企业、科研院所委托专题情报服务。网站主要栏目包括世界科技发展热点的各类先进的新材料石油助剂、化工助剂、建筑涂料,粘合剂 肥料配方,金刚石砂轮,金刚石锯片,磁材,金属表面处理,水处理及水处理剂等新技术工艺配方

发展无止境,创新无止境。国际新技术资料网以不断追求创新和技术进步为动力,以完善质量保证和良好服务为根本,以诚实、信誉为宗旨,竭诚与各界朋友、新老客户诚信合作,共创辉煌!